Conclusion
The current findings suggest a potential role for TXNIP in the occurrence of HT in hyperglycemic conditions following eMCAO. Further studies are needed to understand the precise role of vascular TXNIP on HG/tPA-induced neurovascular damage after stroke.
Methods
HG was induced in adult male mice, by intraperitoneal injection of 20% glucose. This was followed by embolic middle cerebral artery occlusion (eMCAO), with or without IV-tPA (10 mg/kg) given 3 h post embolization. Brain infarction, edema, hemoglobin content, expression of matrix metalloproteinase (MMP-9), vascular endothelial growth factor A (VEGFA), tight junction proteins (claudin-5, occluding, and zonula occludens-1), TXNIP, and NOD-like receptor protein3 (NLRP3)-inflammasome activation were evaluated at 24 h after eMCAO.
Results
HG alone significantly increased TXNIP in the brain after eMCAO, and this was associated with exacerbated hemorrhagic transformation (HT; as measured by hemoglobin content). IV-tPA in HG conditions showed a trend to decrease infarct volume, but worsened HT after eMCAO, suggesting that HG reduces the therapeutic efficacy of IV-tPA. Further, HG and tPA-reperfusion did not show significant differences in expression of MMP-9, VEGFA, junction proteins, and NLRP3 inflammasome activation between the groups.