Characterization of material properties and deformation in the ANGUS phantom during mild head impacts using MRI

使用 MRI 表征轻微头部撞击期间 ANGUS 体模中的材料特性和变形

阅读:2
作者:Andrew K Knutsen, Suhas Vidhate, Grace McIlvain, Josh Luster, Eric J Galindo, Curtis L Johnson, Dzung L Pham, John A Butman, Ricardo Mejia-Alvarez, Michaelann Tartis, Adam M Willis

Abstract

Traumatic brain injury (TBI) is a major health concern affecting both military and civilian populations. Despite notable advances in TBI research in recent years, there remains a significant gap in linking the impulsive loadings from a blast or a blunt impact to the clinical injury patterns observed in TBI. Synthetic head models or phantoms can be used to establish this link as they can be constructed with geometry, anatomy, and material properties that match the human brain, and can be used as an alternative to animal models. This study presents one such phantom called the Anthropomorphic Neurologic Gyrencephalic Unified Standard (ANGUS) phantom, which is an idealized gyrencephalic brain phantom composed of polyacrylamide gel. Here we mechanically characterized the ANGUS phantom using tagged magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE), and then compared the outcomes to data obtained in healthy volunteers. The direct comparison between the phantom's response and the data from a cohort of in vivo human subjects demonstrate that the ANGUS phantom may be an appropriate model for bulk tissue response and gyral dynamics of the human brain under small amplitude linear impulses. However, the phantom's response differs from that of the in vivo human brain under rotational impacts, suggesting avenues for future improvements to the phantom.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。