Role of an interdependent Wnt, GSK3-β/β-catenin and HB-EGF/EGFR mechanism in arsenic-induced hippocampal neurotoxicity in adult mice

相互依赖的 Wnt、GSK3-β/β-catenin 和 HB-EGF/EGFR 机制在成年小鼠砷诱导的海马神经毒性中的作用

阅读:2
作者:Asmita Garg, Sanghamitra Bandyopadhyay

Abstract

We previously reported the neurotoxic effects of arsenic in the hippocampus. Here, we explored the involvement of Wnt pathway, which contributes to neuronal functions. Administering environmentally relevant arsenic concentrations to postnatal day-60 (PND60) mice demonstrated a dose-dependent increase in hippocampal Wnt3a and its components, Frizzled, phospho-LRP6, Dishevelled and Axin1 at PND90 and PND120. However, p-GSK3-β(Ser9) and β-catenin levels although elevated at PND90, decreased at PND120. Additionally, treatment with Wnt-inhibitor, rDkk1, reduced p-GSK3-β(Ser9) and β-catenin at PND90, but failed to affect their levels at PND120, indicating a time-dependent link with Wnt. To explore other underlying factors, we assessed epidermal growth factor receptor (EGFR) pathway, which interacts with GSK3-β and appears relevant to neuronal functions. We primarily found that arsenic reduced hippocampal phosphorylated-EGFR and its ligand, Heparin-binding EGF-like growth factor (HB-EGF), at both PND90 and PND120. Moreover, treatment with HB-EGF rescued p-GSK3-β(Ser9) and β-catenin levels at PND120, suggesting their HB-EGF/EGFR-dependent regulation at this time point. Additionally, rDkk1, LiCl (GSK3-β-activity inhibitor), or β-catenin protein treatments induced a time-dependent recovery in HB-EGF, indicating potential inter-dependent mechanism between hippocampal Wnt/β-catenin and HB-EGF/EGFR following arsenic exposure. Fluorescence immunolabeling then validated these findings in hippocampal neurons. Further exploration of hippocampal neuronal survival and apoptosis demonstrated that treatment with rDkk1, LiCl, β-catenin and HB-EGF improved Nissl staining and NeuN levels, and reduced cleaved-caspase-3 levels in arsenic-treated mice. Supportively, we detected improved Y-Maze and Passive Avoidance performances for learning-memory functions in these mice. Overall, our study provides novel insights into Wnt/β-catenin and HB-EGF/EGFR pathway interaction in arsenic-induced hippocampal neurotoxicity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。