Effect of high-fat diet on the fatty acid profiles of brain in offspring mice exposed to maternal gestational diabetes mellitus

高脂饮食对妊娠期糖尿病小鼠子代脑脂肪酸谱的影响

阅读:3
作者:Hai-Tao Yu, Wen-Hui Xu, Jia-Yu Gong, Yi-Fei Chen, Yuan He, Shu-Tong Chen, Yan-Yan Wu, Guo-Liang Liu, Hai-Ying Zhang, Lin Xie

Conclusions

Maternal GDM increased the susceptibility of male offspring to HF diet-induced obesity. HF diet-induced adverse brain fatty acid profiles in both male and female offspring exposed to GDM.

Methods

Insulin receptor antagonist (S961) and HF diet were used to establish the GDM animal model. Brain fatty acid profiles of the offspring mice were measured by gas chromatography at weaning and adulthood. Protein expressions of the fatty acid transport pathway Wnt3/β-catenin and the target protein major facilitator superfamily domain-containing 2a (MFSD2a) were measured in the offspring brain by Western blot.

Objective

Fatty acids play a critical role in the proper functioning of the brain. This study investigated the effects of a high-fat (HF) diet on brain fatty acid profiles of offspring exposed to maternal gestational diabetes mellitus (GDM).

Results

Maternal GDM increased the body weight of male offspring (P < 0.05). In weaning offspring, factorial analysis showed that maternal GDM increased the monounsaturated fatty acid (MUFA) percentage of the weaning offspring's brain (P < 0.05). Maternal GDM decreased offspring brain arachidonic acid (AA), but HF diet increased brain linoleic acid (LA) (P < 0.05). Maternal GDM and HF diet reduced offspring brain docosahexaenoic acid (DHA), and the male offspring had higher DHA than the female offspring (P < 0.05). In adult offspring, factorial analysis showed that HF diet increased brain MUFA in offspring, and male offspring had higher brain MUFA than female offspring (P < 0.05). The HF diet increased brain LA in the offspring. Male offspring had higher level of AA than female offspring (P < 0.05). HF diet reduced DHA in the brains of female offspring. The brain protein expression of β-catenin and MFSD2a in both weaning and adult female offspring was lower in the HF + GDM group than in the CON group (P < 0.05). Conclusions: Maternal GDM increased the susceptibility of male offspring to HF diet-induced obesity. HF diet-induced adverse brain fatty acid profiles in both male and female offspring exposed to GDM.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。