Clinical and Pathological Benefits of Edaravone for Alzheimer's Disease with Chronic Cerebral Hypoperfusion in a Novel Mouse Model

依达拉奉对新型小鼠模型中阿尔茨海默病伴慢性脑灌注不足的临床和病理学益处

阅读:11
作者:Tian Feng, Toru Yamashita, Jingwei Shang, Xiaowen Shi, Yumiko Nakano, Ryuta Morihara, Keiichiro Tsunoda, Emi Nomura, Ryo Sasaki, Koh Tadokoro, Namiko Matsumoto, Nozomi Hishikawa, Yasuyuki Ohta, Koji Abe

Abstract

Alzheimer's disease (AD) and chronic cerebral hypoperfusion (CCH) often coexist in dementia patients in aging societies. The hallmarks of AD including amyloid-β (Aβ)/phosphorylated tau (pTau) and pathology-related events such as neural oxidative stress and neuroinflammation play critical roles in pathogenesis of AD with CCH. A large number of lessons from failures of drugs targeting a single target or pathway on this so complicated disease indicate that disease-modifying therapies targeting multiple key pathways hold potent potential in therapy of the disease. In the present study, we used a novel mouse model of AD with CCH to investigate a potential therapeutic effect of a free radical scavenger, Edaravone (EDA) on AD with CCH via examining motor and cognitive capacity, AD hallmarks, neural oxidative stress, and neuroinflammation. Compared with AD with CCH mice at 12 months of age, EDA significantly improved motor and cognitive deficits, attenuated neuronal loss, reduced Aβ/pTau accumulation, and alleviated neural oxidative stress and neuroinflammation. These findings suggest that EDA possesses clinical and pathological benefits for AD with CCH in the present mouse model and has a potential as a therapeutic agent for AD with CCH via targeting multiple key pathways of the disease pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。