Mössbauer and EPR study of iron in vacuoles from fermenting Saccharomyces cerevisiae

酿酒酵母发酵液泡中铁的穆斯堡尔和 EPR 研究

阅读:13
作者:Allison L Cockrell, Gregory P Holmes-Hampton, Sean P McCormick, Mrinmoy Chakrabarti, Paul A Lindahl

Abstract

Vacuoles were isolated from fermenting yeast cells grown on minimal medium supplemented with 40 μM (57)Fe. Absolute concentrations of Fe, Cu, Zn, Mn, Ca, and P in isolated vacuoles were determined by ICP-MS. Mössbauer spectra of isolated vacuoles were dominated by two spectral features: a mononuclear magnetically isolated high-spin (HS) Fe(III) species coordinated primarily by hard/ionic (mostly or exclusively oxygen) ligands and superparamagnetic Fe(III) oxyhydroxo nanoparticles. EPR spectra of isolated vacuoles exhibited a g(ave) ~ 4.3 signal typical of HS Fe(III) with E/D ~ 1/3. Chemical reduction of the HS Fe(III) species was possible, affording a Mössbauer quadrupole doublet with parameters consistent with O/N ligation. Vacuolar spectral features were present in whole fermenting yeast cells; however, quantitative comparisons indicated that Fe leaches out of vacuoles during isolation. The in vivo vacuolar Fe concentration was estimated to be ~1.2 mM while the Fe concentration of isolated vacuoles was ~220 μM. Mössbauer analysis of Fe(III) polyphosphate exhibited properties similar to those of vacuolar Fe. At the vacuolar pH of 5, Fe(III) polyphosphate was magnetically isolated, while at pH 7, it formed nanoparticles. This pH-dependent conversion was reversible. Fe(III) polyphosphate could also be reduced to the Fe(II) state, affording similar Mössbauer parameters to that of reduced vacuolar Fe. These results are insufficient to identify the exact coordination environment of the Fe(III) species in vacuoles, but they suggest a complex closely related to Fe(III) polyphosphate. A model for Fe trafficking into/out of yeast vacuoles is proposed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。