Use of machine learning to classify high-risk variants of uncertain significance in lamin A/C cardiac disease

使用机器学习对层蛋白 A/C 心脏病中意义不明确的高风险变异进行分类

阅读:12
作者:Jeffrey S Bennett, David M Gordon, Uddalak Majumdar, Patrick J Lawrence, Adrianna Matos-Nieves, Katherine Myers, Anna N Kamp, Julie C Leonard, Kim L McBride, Peter White, Vidu Garg

Background

Variation in lamin A/C

Conclusion

An unsupervised ML method successfully identified clusters enriched for pathogenic LMNA variants including a novel variant associated with conduction system disease. Our ML method may assist in identifying high-risk VUS when familial testing is unavailable.

Methods

Genetic sequencing was performed on family members with conduction system disease, and patient cell lines were examined for LMNA expression. In silico predictions of conservation and pathogenicity of published LMNA variants were visualized with uniform manifold approximation and projection. K-means clustering was used to identify variant groups with similarly projected scores, allowing the generation of statistically supported risk categories.

Objective

The goal of this study was to use a machine learning (ML) approach for in silico prediction of LMNA pathogenic variation.

Results

We discovered a novel LMNA variant (c.408C>A:p.Asp136Glu) segregating with conduction system disease in a multigeneration pedigree, which was reported as a VUS by a commercial testing company. Additional familial analysis and in vitro testing found it to be pathogenic, which prompted the development of an ML algorithm that used in silico predictions of pathogenicity for known LMNA missense variants. This identified 3 clusters of variation, each with a significantly different incidence of known pathogenic variants (38.8%, 15.0%, and 6.1%). Three hundred thirty-nine of 415 head/rod domain variants (81.7%), including p.Asp136Glu, were in clusters with highest proportions of pathogenic variants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。