Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice

漆黄素通过调节 apoE-/- 小鼠的 PCSK9 和 LOX-1 改善动脉粥样硬化

阅读:2
作者:Li Yan, Qingling Jia, Hui Cao, Chuan Chen, Sanli Xing, Yan Huang, Dingzhu Shen

Abstract

The purpose of the current study was to investigate the mechanism by which fisetin improves atherosclerosis (AS) by regulating lipid metabolism and senescence in apolipoprotein E-deficient (apoE-/-) mice. An AS model was established by feeding apoE-/- mice a high-fat diet. Mice were randomly divided into the model group (n=18), the fisetin group (n=18) and the atorvastatin group (n=18). The control group (n=18) was composed of wild-type C57BL/6 mice of the same age and genetic background. The fisetin and atorvastatin groups were respectively treated with aqueous solutions of fisetin (12.5 mg/kg) and atorvastatin (2 mg/kg) via oral gavage daily for 12 weeks. The pathological morphology, lipid accumulation, collagen deposition of the aortic sinus were observed, serum lipids, superoxide dismutase (SOD) and malondialdehyde (MDA) levels and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured in the peripheral blood serum. Additionally, the expressions of proprotein convertase subtilisin/kexin type 9 (PCSK9), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), tumor suppressor protein p53 (p53), cyclin-dependent kinase inhibitor 1A (p21) and multiple tumor suppressor-1 (p16) were analyzed in the aorta. The results of the current study indicated that compared with the control group, a large area of AS plaque in the aortic sinus that contained a large amount of red-stained lipids and decreased collagen fiber content were found in the model group, which exhibited higher total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), oxidized low-density lipoprotein (ox-LDL) and MDA levels; higher ALT and AST activities, lower high-density lipoprotein cholesterol (HDL-C) and SOD levels and increased expression levels of PCSK9, LOX-1, p53, p21 and p16. Fisetin is a phytochemical and bioflavonoid that serves a potential role in chronic diseases including AS, obesity, diabetes and cancer due to its wide biological activities, such as regulating lipid metabolism and anti-aging, anti-oxidation and anti-inflammatory. Atorvastatin is recognized as a first-line treatment drug for AS; therefore it was used as a positive control in the current study. Following fisetin and atorvastatin treatment, both the AS plaque and the lipid accumulation in the aortic sinus were significantly reduced, and the expressions of PCSK9, LOX-1 and aging markers, including p53, p21 and p16 were downregulated.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。