Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice

漆黄素通过调节 apoE-/- 小鼠的 PCSK9 和 LOX-1 改善动脉粥样硬化

阅读:12
作者:Li Yan, Qingling Jia, Hui Cao, Chuan Chen, Sanli Xing, Yan Huang, Dingzhu Shen

Abstract

The purpose of the current study was to investigate the mechanism by which fisetin improves atherosclerosis (AS) by regulating lipid metabolism and senescence in apolipoprotein E-deficient (apoE-/-) mice. An AS model was established by feeding apoE-/- mice a high-fat diet. Mice were randomly divided into the model group (n=18), the fisetin group (n=18) and the atorvastatin group (n=18). The control group (n=18) was composed of wild-type C57BL/6 mice of the same age and genetic background. The fisetin and atorvastatin groups were respectively treated with aqueous solutions of fisetin (12.5 mg/kg) and atorvastatin (2 mg/kg) via oral gavage daily for 12 weeks. The pathological morphology, lipid accumulation, collagen deposition of the aortic sinus were observed, serum lipids, superoxide dismutase (SOD) and malondialdehyde (MDA) levels and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured in the peripheral blood serum. Additionally, the expressions of proprotein convertase subtilisin/kexin type 9 (PCSK9), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), tumor suppressor protein p53 (p53), cyclin-dependent kinase inhibitor 1A (p21) and multiple tumor suppressor-1 (p16) were analyzed in the aorta. The results of the current study indicated that compared with the control group, a large area of AS plaque in the aortic sinus that contained a large amount of red-stained lipids and decreased collagen fiber content were found in the model group, which exhibited higher total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), oxidized low-density lipoprotein (ox-LDL) and MDA levels; higher ALT and AST activities, lower high-density lipoprotein cholesterol (HDL-C) and SOD levels and increased expression levels of PCSK9, LOX-1, p53, p21 and p16. Fisetin is a phytochemical and bioflavonoid that serves a potential role in chronic diseases including AS, obesity, diabetes and cancer due to its wide biological activities, such as regulating lipid metabolism and anti-aging, anti-oxidation and anti-inflammatory. Atorvastatin is recognized as a first-line treatment drug for AS; therefore it was used as a positive control in the current study. Following fisetin and atorvastatin treatment, both the AS plaque and the lipid accumulation in the aortic sinus were significantly reduced, and the expressions of PCSK9, LOX-1 and aging markers, including p53, p21 and p16 were downregulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。