miR-217 inhibits the migration and invasion of HeLa cells through modulating MAPK1

miR-217通过调控MAPK1抑制HeLa细胞的迁移和侵袭

阅读:9
作者:Lihong Zhu, Shumei Yang, Jianfeng Wang

Abstract

MicroRNA (miR)‑217 serves a pivotal role in the progression of colorectal cancer, renal cell carcinoma and glioma, however, the role of miR‑217 in cervical cancer (CC) remains unclear. In the present study, the mechanism of miR‑217 in cervical cancer was explored. The mRNA expression of miR‑217 and mitogen‑activated protein kinase 1 (MAPK1) were assessed using reverse transcription‑quantitative polymerase chain reaction analysis. Cell Counting‑Kit 8, wound‑healing and Transwell assays were performed to detect cell viability, migration and invasion, respectively. Apoptosis and cell cycle were determined by flow cytometry. TargetScan 7.2 and dual‑luciferase reporter assays were respectively used to determine miR‑217 target genes and their binding capacities. The protein expression levels of MAPK1, phosphorylated (p)‑extracellular signal‑regulated kinase 1/2 (ERK1/2)/ERK1/2, Bcl‑2, Bax and cleaved caspase‑3 were quantified by western blotting. It was found that miR‑217 was downregulated in patients with CC and in CC cells. The viability, migration and invasion of cells were suppressed by a miR‑217 mimic. It was also found that apoptosis was increased and cell cycle was inhibited by the miR‑217mimic, which was supported by changes in Bcl‑2, Bax and cleaved caspase‑3. MAPK1 was upregulated in patients with CC and was a target gene of miR‑217. MAPK1 reversed the inhibition of miR‑217 on cell viability, migration, invasion and apoptosis. The protein levels of MAPK1 and p‑ERK1/2, which were higher in the mimic MAPK1 group than those in the control or mimic groups, were ameliorated by PD98059. The results of the present study demonstrated that miR‑217 had an anti‑CC effect and may be effectively used in the treatment of CC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。