Biogenic engineered zinc oxide nanoparticle for sulfur black dye removal from contaminated wastewater: comparative optimization, simulation modeling, and isotherms

生物工程氧化锌纳米粒子用于去除受污染废水中的硫化黑染料:比较优化、模拟建模和等温线

阅读:29
作者:Sangita Yadav, Subhash Chander, Asha Gupta, Navish Kataria, Kuan Shiong Khoo

Abstract

This research work aimed to isolate and culture the bacterium Bacillus paramycoides for biogenic fabrication of zinc oxide nanoparticles, specifically ZnO and ZnO-ME nanoparticles (nanoparticles fabricated from bacterial extracts only - ZnO, and from bacterial cell mass including extract - ZnO-ME). SEM investigation revealed the spherical-shaped NPs with 22.33 and 39 nm in size for ZnO and ZnO-ME, respectively. The Brunauer, Emmett, and Teller (BET) studies revealed mesoporous structure with pore diameters of 13.839 and 13.88 nm and surface area of 7.617 and 33.635 m2/gm for ZnO and ZnO-ME, respectively. Various parameters for the adsorption of sulfur black dye onto both ZnO and ZnO-ME were screened and optimized using Plackett-Burman Design (PBD), Full Factorial Design (FFD) and Central Composite Design (CCD). The results of the optimization modeling study revealed that FFD yielded the most predictable and best-fitting results among all the models studied, with R2 values of 0.998 for ZnO and 0.993 for ZnO-ME. Notably, ZnO-ME exhibited a greater dye removal efficiency 80% than ZnO i.e., 71%, it may be due to the presence of amorphous carbon on the surface of ZnO-ME. Among the various isothermal models, the Freundlich model displayed the strongest correlation with the dye removal data, confirming the multilayer adsorption of dye on both nanoparticles and supporting physisorption. Therefore, ZnO and ZnO-ME nanoparticles have been proven as potential tools for mitigating environmental impacts associated with dye-containing wastewater.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。