Sleeve gastrectomy links the attenuation of diabetic kidney disease to the inhibition of renal tubular ferroptosis through down-regulating TGF-β1/Smad3 signaling pathway

袖状胃切除术通过下调 TGF-β1/Smad3 信号通路抑制肾小管铁死亡,从而减轻糖尿病肾病

阅读:2
作者:C Liu #, M Zhong #, X Jin, J Zhu, Y Cheng, L Li, Q Xu, Q Liu, H Ding, G Zhang

Conclusions

With the capacity to lower the glucose, SG could attenuate the ferroptosis by inhibiting TGF-β1/Smad3 signaling pathway in DKD rats, and eventually attenuated DKD.

Methods

DKD model was induced by high-fat diet (HFD) combined with streptozocin in Wistar rats. SG was performed, and the group subjected to sham surgery served as control. The animals were euthanized 12 weeks after surgery, followed by sample collection for the subsequent experiment. The HK-2, a renal proximal tubular epithelial cell line derived from human, was utilized to investigate the potential mechanisms.

Purpose

To investigate how sleeve gastrectomy (SG), a typical operation of bariatric surgery, attenuated symptom, and progression of diabetic kidney disease (DKD).

Results

SG improved metabolic parameters and glucose homeostasis, and could alleviate DKD in terms of renal function indices as well as histological and morphological structures in DM rats, accompanied with a significant reduction in renal tubular injury. Compared with sham group, SG reduced the renal tubular ferroptosis. To further clarify the mechanism involved, in vitro experiments were performed. In the presence of high glucose, renal tubular TGF-β1 secretion was significantly increased in HK-2 cell line, which led to activation of ferroptosis through TGF-β1/Smad3 signaling pathway. Inhibition of TGF-β1 receptor and phosphorylation of Smad3 significantly ameliorated TGF-β1-mediated ferroptosis. In vivo experiments also found that SG improved the hyperglycemic environment, reduced renal TGF-β1 concentrations, and down-regulated the TGF-β1/Smad3 signaling pathway. Conclusions: With the capacity to lower the glucose, SG could attenuate the ferroptosis by inhibiting TGF-β1/Smad3 signaling pathway in DKD rats, and eventually attenuated DKD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。