Peptide OM-LV20 promotes arteriogenesis induced by femoral artery ligature via the miR-29b-3p/VEGFA axis

肽 OM-LV20 通过 miR-29b-3p/VEGFA 轴促进股动脉结扎诱导的动脉生成

阅读:12
作者:Yingxuan Zhang, Zijian Kang, Jianjun Wang, Sahua Liu, Xin Liu, Zhiruo Li, Yilin Li, Yinglei Wang, Zhe Fu, Jiayi Li, Yubing Huang, Zeqiong Ru, Ying Peng, Zhiyu Yang, Ying Wang, Xinwang Yang, Mingying Luo

Aims

Therapeutic arteriogenesis is a promising direction for the treatment of ischemic disease caused by atherosclerosis. However, pharmacological or biological approaches to stimulate functional collateral vessels are not yet available. Identifying new drug targets to promote and explore the underlying mechanisms for therapeutic arteriogenesis is necessary.

Background and aims

Therapeutic arteriogenesis is a promising direction for the treatment of ischemic disease caused by atherosclerosis. However, pharmacological or biological approaches to stimulate functional collateral vessels are not yet available. Identifying new drug targets to promote and explore the underlying mechanisms for therapeutic arteriogenesis is necessary.

Conclusions

Our data indicated that OM-LV20 enhanced arteriogenesis via the miR-29b-3p/VEGFA/VEGFR2-PI3K/AKT/eNOS axis, and highlighte the application potential of exogenous peptide molecular probes through miRNA, which could promote effective therapeutic arteriogenesis in ischemic conditions.

Methods

Peptide OM-LV20 (20 ng/kg) was administered for 7 consecutive days on rat hindlimb ischemia model, collateral vessel growth was assessed by H&E staining, liquid latex perfusion, and specific immunofluorescence. In vitro, we detected the effect of OM-LV20 on human umbilical vein endothelial cells (HUVEC) proliferation and migration. After transfection, we performed quantitative real-time polymerase chain reaction, in situ-hybridization and dual luciferase reporters to assessed effective miRNAs and target genes. The proteins related to downstream signaling pathways were detected by Western blot.

Results

OM-LV20 significantly increased visible collateral vessels and endothelial nitric oxide synthase (eNOS), together with enhanced inflammation cytokine and monocytes/macrophage infiltration in collateral vessels. In vitro, we defined a novel microRNA (miR-29b-3p), and its inhibition enhanced proliferation and migration of HUVEC, as well as the expression of vascular endothelial growth factor A (VEGFA). OM-LV20 also promoted migration and proliferation of HUVEC, and VEGFA expression was mediated via inhibition of miR-29b-3p. Furthermore, OM-LV20 influenced the protein levels of VEGFR2 and phosphatidylinositol3-kinase (PI3K)/AKT and eNOS in vitro and invivo. Conclusions: Our data indicated that OM-LV20 enhanced arteriogenesis via the miR-29b-3p/VEGFA/VEGFR2-PI3K/AKT/eNOS axis, and highlighte the application potential of exogenous peptide molecular probes through miRNA, which could promote effective therapeutic arteriogenesis in ischemic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。