Baicalin inhibits monosodium urate crystal-induced pyroptosis in renal tubular epithelial cell line through Panx-1/P2X7 pathways: Molecular docking, molecular dynamics, and in vitro experiments

黄芩苷通过 Panx-1/P2X7 通路抑制单钠尿酸盐晶体诱导的肾小管上皮细胞焦亡:分子对接、分子动力学和体外实验

阅读:7
作者:Wanting Fu, Ziyuan Liu, Yingzhou Wang, Xindi Li, Xiang Yu, Yang Li, Zejun Yu, Yinsheng Qiu, Zhinan Mei, Lingyun Xu

Abstract

Pyroptosis is a programmed cell death process that frequently occurs in many diseases, including hyperuricemic nephropathy (HN). In HN, a range of stimuli mediates inflammation, leading to the activation of inflammasomes and the production of gasdermin D (GSDMD). Baicalin (BA), a natural flavonoid renowned for its antioxidant and anti-inflammatory properties, was investigated for its role in HN in this study. Initially, HN-like inflammation and pyroptosis were induced in HK-2 cells with treatment of monosodium urate (MSU), followed by the BA treatment. The expression of pyroptosis-associated genes, Panx-1 and P2X7, at both mRNA and protein levels was assessed through real-time polymerase chain reaction (RT-qPCR) and Western blotting (WB) without or with BA treatment. The results showed that expression of Panx-1 and P2X7 at mRNA and protein levels was increased in MSU-treated HK-2 cells, which subsequently decreased upon the BA treatment. Further experiments showed that BA could combine NLRP3 inflammasome and GSDMD, destabilizing GSDMD protein. Moreover, BA protected the cell membrane from MSU-induced damage, as evidenced by Hoechst 33342 and PI double staining, lactate dehydrogenase (LDH) assays, and electron microscopy observations. These results suggest that BA is involved in the regulating Panx-1/P2X7 pathways and thus inhibits pyroptosis, highlighting its potential therapeutic effect for HN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。