Hyperactivation of succinate dehydrogenase promotes pyroptosis of macrophage via ROS-induced GSDMD oligomerization in acute liver failure

急性肝衰竭中琥珀酸脱氢酶过度活化通过 ROS 诱导的 GSDMD 寡聚化促进巨噬细胞焦亡

阅读:10
作者:Jiao Yang, JingWen Liang, Cai Huang, ZaiCheng Wu, YanChang Lei

Abstract

Acute liver failure (ALF) is a life-threatening disease with high mortality. Given excessive inflammation is one of the major pathogenesis of ALF, candidates targeting inflammation could be beneficial in the condition. Now the effect of hyperactivated succinate dehydrogenase (SDH) on promoting inflammation in lipopolysaccharide (LPS)-treated macrophages has been studied. However, its role and mechanism in ALF is not well understood. Here intraperitoneal injection of D-galactosamine and LPS was conducted in male C57BL/6 J mice to induce the ALF model. Dimethyl malonate (DMM), which inhibited SDH activity, was injected intraperitoneally 30 min before ALF induction. Macrophage pyroptosis was induced by LPS plus adenosine triphosphate (ATP). Pyroptosis-related molecules and proteins including GSDMD oligomer were examined by ELISA and western blot techniques, respectively. ROS production was assessed by fluorescence staining. The study demonstrated SDH activity was increased in liver macrophages from ALF mice. Importantly, DMM administration inhibited ROS, IL-1β, and pyroptosis-associated proteins levels (NLRP3, cleaved caspase-1, GSDMD-N, and GSDMD oligomers) both in the ALF model and in macrophages stimulated with LPS plus ATP. In vitro, ROS promoted pyroptosis by facilitating GSDMD oligomerization. Additionally, when ROS levels were increased through the addition of H2O2 to the DMM group, the levels of GSDMD oligomers were reverted. In conclusion, SDH hyperactivation promotes macrophage pyroptosis by ROS-mediated GSDMD oligomerization, suggesting that targeting this pathway holds promise as a strategy for treating ALF and other inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。