Interleukin-17A pretreatment attenuates the anti-hepatitis B virus efficacy of interferon-alpha by reducing activation of the interferon-stimulated gene factor 3 transcriptional complex in hepatitis B virus-expressing HepG2 cells

白细胞介素-17A 预处理通过降低表达乙肝病毒的 HepG2 细胞中干扰素刺激基因因子 3 转录复合物的激活来减弱干扰素-α 的抗乙肝病毒功效

阅读:2
作者:Jiaxuan Zhang #, Kai Liu #, Gaoli Zhang, Ning Ling, Min Chen

Background

Some cytokine signaling pathways can interact with interferon (IFN)-α pathway and thus regulate cell responses to IFN-α. Levels of the pro-inflammatory cytokine interleukin-17A (IL-17A) were found to be elevated in both the peripheral blood and liver in chronic hepatitis B (CHB) patients. However, how IL-17A affects the anti-HBV activity of IFN-α remains unclear.

Conclusions

Our results demonstrate that IL-17A pretreatment could attenuate IFN-α-induced anti-HBV activity by upregulating negative regulators of the critical transcriptional ISGF3 complex. Thus, this might be a potential target for improving response to IFN-α therapy.

Methods

The effects of IL-17A on anti-HBV activity of IFN-α were evaluated in HBV-expressing HepG2 cells (HepG2-HBV1.3) with IL-17A pretreatment and IFN-α stimulation. Culture supernatant levels of HBsAg, HBeAg, and HBV DNA, or intracellular expression of HBsAg and HBcAg were detected by ELISA, real-time quantitative PCR (RT-qPCR), or western blotting (WB). The expression of canonical IFN-α signaling pathway components, including the interferon-α/β receptor (IFNAR), Janus Kinase 1 (JAK1), Tyrosine Kinase 2 (TYK2), the Interferon Stimulated Gene Factor 3 complex (ISGF3) and IFN-stimulated genes (ISGs), was also examined by RT-qPCR, Immunofluorescence or WB. The effects of IL-17A were further investigated by the suppression of the IL-17A pathway with a TRAF6 inhibitor.

Results

Compared to IFN-α stimulation alone, IL-17A pretreatment followed by IFN-α stimulation increased the levels of HBsAg, HBeAg, and HBV DNA, and decreased the levels of ISGF3 complex (phosphorylated (p)-signal transducer and activator of transcription (STAT1)/p-STAT2/IRF9) and antiviral-related ISGs (ISG15, ISG20 and Mx1). Interestingly, IL-17A pretreatment increased the expression of suppressor of cytokine signaling (SOCS) 1, SOCS3 and USP18, which were also the ISGs negatively regulating activity of ISGF3. Moreover, IFNAR1 protein expression declined more sharply in the group with IL-17A pretreatment than in the group with IFN-α stimulation alone. Blocking the IL-17A pathway reversed the effects of IL-17A on the IFN-α-induced activation of ISGF3 and anti-HBV efficacy. Conclusions: Our results demonstrate that IL-17A pretreatment could attenuate IFN-α-induced anti-HBV activity by upregulating negative regulators of the critical transcriptional ISGF3 complex. Thus, this might be a potential target for improving response to IFN-α therapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。