Conclusions
These findings indicate that complement cross talks with H-K-ATPase to upregulate Runx2 in human AVICs by activation of ERK1/2 signaling pathways. The study revealed the potential role of H-K-ATPase in the pathogenesis of CAVD and therapeutically targeting either complement system or H-K-ATPase may limit the development of CAVD.
Methods
Human AVICs were isolated from normal and calcified aortic valves. Cells were treated with a variation of complement, H-K-ATPase, or ERK1/2 inhibitors. H-K-ATPase and its association with complement in AVICs were investigated by reverse transcriptase-polymerase chain reaction, immunofluorescence, and Western blot.
Results
Calcified human AVICs expressed significantly higher H-K-ATPase level than normal human AVICs. Presence of complement C3 with H-K-ATPase is found in AVICs after complement treatment. Complement induced both H-K-ATPase and Runx2 expression in AVICs, which was associated with increased phosphorylation of ERK1/2 and its downstream molecule p-70 S6. Pharmacological inhibition of either H-K-ATPase or Erk1/2 abolished complement-induced Runx2 expression. Conclusions: These findings indicate that complement cross talks with H-K-ATPase to upregulate Runx2 in human AVICs by activation of ERK1/2 signaling pathways. The study revealed the potential role of H-K-ATPase in the pathogenesis of CAVD and therapeutically targeting either complement system or H-K-ATPase may limit the development of CAVD.