Bio-physiological susceptibility of the brain, heart, and lungs to systemic ischemia reperfusion and hyperoxia-induced injury in post-cardiac arrest rats

心脏骤停后大鼠脑、心脏和肺对全身缺血再灌注和高氧诱导损伤的生物生理敏感性

阅读:3
作者:Tomoaki Aoki, Vanessa Wong, Yusuke Endo, Kei Hayashida, Ryosuke Takegawa, Yu Okuma, Muhammad Shoaib, Santiago J Miyara, Tai Yin, Lance B Becker, Koichiro Shinozaki

Abstract

Cardiac arrest (CA) patients suffer from systemic ischemia-reperfusion (IR) injury leading to multiple organ failure; however, few studies have focused on tissue-specific pathophysiological responses to IR-induced oxidative stress. Herein, we investigated biological and physiological parameters of the brain and heart, and we particularly focused on the lung dysfunction that has not been well studied to date. We aimed to understand tissue-specific susceptibility to oxidative stress and tested how oxygen concentrations in the post-resuscitation setting would affect outcomes. Rats were resuscitated from 10 min of asphyxia CA. Mechanical ventilation was initiated at the beginning of cardiopulmonary resuscitation. We examined animals with or without CA, and those were further divided into the animals exposed to 100% oxygen (CA_Hypero) or those with 30% oxygen (CA_Normo) for 2 h after resuscitation. Biological and physiological parameters of the brain, heart, and lungs were assessed. The brain and lung functions were decreased after CA and resuscitation indicated by worse modified neurological score as compared to baseline (222 ± 33 vs. 500 ± 0, P < 0.05), and decreased PaO2 (20 min after resuscitation: 113 ± 9 vs. baseline: 128 ± 9 mmHg, P < 0.05) and increased airway pressure (2 h: 10.3 ± 0.3 vs. baseline: 8.1 ± 0.2 mmHg, P < 0.001), whereas the heart function measured by echocardiography did not show significant differences compared before and after CA (ejection fraction, 24 h: 77.9 ± 3.3% vs. baseline: 82.2 ± 1.9%, P = 0.2886; fractional shortening, 24 h: 42.9 ± 3.1% vs. baseline: 45.7 ± 1.9%, P = 0.4658). Likewise, increases of superoxide production in the brain and lungs were remarkable, while those in the heart were moderate. mRNA gene expression analysis revealed that CA_Hypero group had increases in Il1b as compared to CA_Normo group significantly in the brain (P < 0.01) and lungs (P < 0.001) but not the heart (P = 0.4848). Similarly, hyperoxia-induced increases in other inflammatory and apoptotic mRNA gene expression were observed in the brain, whereas no differences were found in the heart. Upon systemic IR injury initiated by asphyxia CA, hyperoxia-induced injury exacerbated inflammation/apoptosis signals in the brain and lungs but might not affect the heart. Hyperoxia following asphyxia CA is more damaging to the brain and lungs but not the heart.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。