Loss of LRRC33-Dependent TGFβ1 Activation Enhances Antitumor Immunity and Checkpoint Blockade Therapy

LRRC33 依赖性 TGFβ1 活化的丧失可增强抗肿瘤免疫和检查点阻断疗法

阅读:2
作者:Aiping Jiang, Yan Qin, Timothy A Springer

Abstract

TGFβ has multiple roles and gene products (TGFβ1, -β2, and -β3), which make global targeting of TGFβ undesirable. Expression of TGFβ requires association with milieu molecules, which localize TGFβ to the surface of specific cells or extracellular matrices. Here, we found that LRRC33 was specifically associated with TGFβ1, not TGFβ2 and TGFβ3, and was required for surface display and activation of TGFβ1 on tumor-infiltrating myeloid cells. Loss of LRRC33-dependent TGFβ1 activation slowed tumor growth and metastasis by enhancing innate and adaptive antitumor immunity in multiple mouse syngeneic tumor models. LRRC33 loss resulted in a more immunogenic microenvironment, with decreased myeloid-derived suppressor cells, more active CD8+ T and NK cells, and more skewing toward tumor-suppressive M1 macrophages. LRRC33 loss and PD-1 blockade synergized in controlling B16.F10 tumor growth. Our results demonstrate the importance of LRRC33 in tumor biology and highlight the therapeutic potential of dual blockade of the LRRC33/TGFβ1 axis and PD-1/PD-L1 in cancer immunotherapy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。