Magnolol ameliorates fumonisin B1-induced oxidative damage and lipid metabolism dysfunction in astrocyte-like C6 cells

厚朴酚改善伏马菌素B1诱导的星形胶质细胞样C6细胞氧化损伤和脂质代谢功能障碍

阅读:2
作者:Xinlu Wang, Dai Cheng, Lin Liu, Haiqi Yu, Meng Wang

Abstract

The neurotoxicity of fumonisin B1 (FB1), a commonly detected mycotoxin in crops and the environment, has attracted considerable attention in recent years. However, no effective method for eliminating FB1 completely exists due to the thermal stability and water solubility of this mycotoxin. Magnolol (MAG) is a neolignane with antioxidative and neuroprotective effects. It has been applied in neurotoxicity treatment. However, the application of MAG to attenuate FB1-induced toxicity has not been reported. This study explored the protective mechanism of MAG against FB1-induced damage in C6 cells through antioxidant and lipid metabolism modulation. Results showed that exposure to 15 μM FB1 caused oxidative stress by changing the levels of malondialdehyde, reactive oxygen species, total superoxide dismutase, catalase, and total glutathione. These changes were reversed by MAG addition, especially at the concentration of 80 μM. The protective effects of MAG were further confirmed by the reduction in the phosphorylation levels of proteins in the MAPK signaling pathway. Lipidomics analysis identified 263 lipids, which belong to 24 lipid classes. Among all of the identified lipids, triglycerides (TGs), diglycerides (DGs), phosphatidylcholines (PCs), wax monoesters (WEs), Cers, and phosphatidylethanolamines (PEs) were major categories. Moreover, nine categories of lipids showed the opposite change trend in the FB1 exposure and MAG 80 groups. A further investigation of the 34 co-occurring differential lipids with remarkable changes (P value < 0.05 and VIP value > 1) in the control, FB1 exposure, and MAG 80 groups was performed. Therein, nine lipids (PCs, LPCs, and SM) were screened out as potential biomarkers to reveal the cytoprotective effects of MAG. This work is the first to investigate the rescue mechanism of MAG in FB1-induced cytotoxicity. The obtained results may expand the application of MAG to alleviate the toxicity of mycotoxins.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。