The differential expression patterns of Atg9a and Atg9b in cells of the reproductive organs

Atg9a 和 Atg9b 在生殖器官细胞中的差异表达模式

阅读:14
作者:Minseo Lee, Sujin Son, Hyunjung J Lim, Haengseok Song

Conclusion

The Atg9 isoforms exhibited distinct subcellular localizations in UECs and may play different roles in autophagy. Notably, human uterine cells exhibited reduced ATG9B expression, suggesting that this suppression may be due to epigenetic regulation.

Methods

Whole uteri were collected on days 1, 4, and 8 of pregnancy and from ovariectomized mice injected with vehicle, progesterone, or 17β-estradiol. Cells from reproductive tissues, such as granulosa cells, uterine epithelial cells (UECs), uterine stromal cells (USCs), and oocytes were collected. Two human uterine cell lines were also used in this analysis. Reverse transcription-polymerase chain reaction tests, Western blotting, and immunofluorescence staining were performed. Serum starvation conditions were used to induce autophagy in primary cells.

Objective

Autophagy is a major intracellular catabolic pathway governed by the sequential actions of proteins encoded by autophagy-related genes (Atg). ATG9, the only transmembrane protein involved in this process, regulates phospholipid translocation to autophagosomes during the early phases of autophagy. In mammals, two Atg9 isoforms have been reported: Atg9a and Atg9b. In this study, we examined whether the molecular and cellular characteristics of these two isoforms differed in mice.

Results

Atg9a and Atg9b were expressed in multiple mouse tissues and reproductive cells. Neither Atg9A nor Atg9B significantly changed in response to steroid hormones. Immunofluorescence staining of the UECs and USCs showed that ATG9A was distributed in a punctate-like pattern, whereas ATG9B exhibited a pattern of elongated tubular shapes in the cytoplasm. In human cancer cell lines, ATG9B was undetectable, whereas ATG9A was found in all cell types examined.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。