Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation

人类神经元中 L1CAM 的条件性缺失会损害轴突和树突的树枝化和动作电位的产生

阅读:2
作者:Christopher Patzke, Claudio Acuna, Louise R Giam, Marius Wernig, Thomas C Südhof

Abstract

Hundreds of L1CAM gene mutations have been shown to be associated with congenital hydrocephalus, severe intellectual disability, aphasia, and motor symptoms. How such mutations impair neuronal function, however, remains unclear. Here, we generated human embryonic stem (ES) cells carrying a conditional L1CAM loss-of-function mutation and produced precisely matching control and L1CAM-deficient neurons from these ES cells. In analyzing two independent conditionally mutant ES cell clones, we found that deletion of L1CAM dramatically impaired axonal elongation and, to a lesser extent, dendritic arborization. Unexpectedly, we also detected an ∼20-50% and ∼20-30% decrease, respectively, in the levels of ankyrinG and ankyrinB protein, and observed that the size and intensity of ankyrinG staining in the axon initial segment was significantly reduced. Overexpression of wild-type L1CAM, but not of the L1CAM point mutants R1166X and S1224L, rescued the decrease in ankyrin levels. Importantly, we found that the L1CAM mutation selectively decreased activity-dependent Na(+)-currents, altered neuronal excitability, and caused impairments in action potential (AP) generation. Thus, our results suggest that the clinical presentations of L1CAM mutations in human patients could be accounted for, at least in part, by cell-autonomous changes in the functional development of neurons, such that neurons are unable to develop normal axons and dendrites and to generate normal APs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。