Human Neural Stem Cell Secretome Inhibits Neuron Heme Uptake and Ferroptosis in Intracerebral Hemorrhage Through Nrf-2 Signaling Pathway

人类神经干细胞分泌蛋白组通过Nrf-2信号通路抑制脑出血中神经元血红素摄取和铁死亡

阅读:2
作者:Xiaorui Lv, Yating Ling, Dongdong Niu, Yu Zeng, Yun Qiu, Yu Si, Tao Guo, Yinying Ni, Jingwen Zhang, Ziyu Wang, Jiabo Hu

Abstract

Intracerebral hemorrhage (ICH) is a common subtype of stroke with a very high mortality rate, but there is still no effective cure. Increasing evidence suggests that heme accumulation and neuronal ferroptosis play an important role in secondary injury after ICH. Neural stem cells (NSCs), as seed cells of the central nervous system, have received much attention due to their abundant paracrine product components and low immunogenicity. In this study, we focused on the protective mechanism of neural stem cell secretome (NSC-S) against neuronal ferroptosis in an ICH mouse model using hemin-induced in vitro models and collagenase type IV-induced in vivo models. The results showed that NSC-S could ameliorate neurological deficits and reduce neuronal injury in ICH model mice. In addition, NSC-S reduced heme uptake and ferroptosis in hemin-treated N2a cells in vitro. NSC-S induced the activation of Nrf-2 signaling pathway. However, these effects of NSC-S were abolished by the Nrf-2 inhibitor ML385. Notably, HSPE1 in NSC-S may be associated with the protection of NSC-S against hemin-injured neurons via the Nrf-2 signaling pathway. In summary, NSC-S protects against secondary neuronal injury in ICH via the Nrf-2 signaling pathway. Also, this functionality may be implemented by HSPE1.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。