Quantitative proteomics and phosphoproteomics of PPP2R5D variants reveal deregulation of RPS6 phosphorylation through converging signaling cascades

PPP2R5D 变体的定量蛋白质组学和磷酸化蛋白质组学揭示了通过汇聚信号级联导致 RPS6 磷酸化的失调

阅读:2
作者:Smolen Ka, Papke Cm, M R Swingle, Musiyenko A, Li C, Camp Ad, Honkanen Re, Kettenbach An

Abstract

Variants in the phosphoprotein phosphatase-2 regulatory protein-5D gene ( PPP2R5D ) cause the clinical phenotype of Jordan's Syndrome (PPP2R5D-related disorder), which includes intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder and delayed motor skill development. The disorder originates from de novo single nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G>A) in the PPP2R5D allele in a heterozygous manner in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of wild-type, E198K, and E420K cell lines and find unique and shared changes between variants and wild-type cells in kinase- and phosphatase-controlled signaling cascades. As shared signaling alterations, we observed ribosomal protein S6 (RPS6) hyperphosphorylation, indicative of increased ribosomal protein S6-kinase activity. Rapamycin treatment suppressed RPS6 phosphorylation in both, suggesting activation of mTORC1. Intriguingly, our data suggest AKT-dependent (E420K) and -independent (E198K) activation of mTORC1. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, treatment with rapamycin or a p70S6K inhibitor warrants further investigation as potential therapeutic strategies for patients.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。