Fibrinogen Inhibits Metalloproteinase-9 Activation and Syndecan-1 Cleavage to Protect Lung Function in ApoE Null Mice After Hemorrhagic Shock

纤维蛋白原抑制金属蛋白酶-9 激活和多配体蛋白聚糖-1 裂解,保护出血性休克后 ApoE 基因敲除小鼠的肺功能

阅读:9
作者:Feng Wu, Brooke Dorman, Ahmad Zeineddin, Rosemary Ann Kozar

Conclusions

Fibrinogen as a resuscitative adjunct in ApoE-/- mice after hemorrhage shock augmented MAP and reduced histopathologic injury and lung permeability, suggesting fibrinogen protects the endothelium by inhibiting MMP-9-mediated syndecan-1 cleavage in obese mice.

Methods

ApoE null (-/-) mice were fed a Western diet to induce obesity. Mice were subjected to hemorrhage shock and laparotomy then resuscitated with Lactated Ranger's (LR) or LR containing fibrinogen and compared to null and lean sham wild type mice. Mean arterial pressure (MAP) was monitored. Bronchial alveolar lavage protein as an indicator of permeability and lung histopathologic injury were assessed. Syndecan-1 protein and active MMP-9 protein were measured.

Results

MAP was similar between lean sham and ApoE-/- sham mice. However, following hemorrhage, ApoE-/- mice resuscitated with fibrinogen had significantly higher MAP than LR mice. Lung histopathologic injury and permeability were increased in LR compared to fibrinogen resuscitated animals. Compared with lean sham mice, both active MMP-9 and cleaved syndecan-1 level were significantly higher in ApoE-/- sham mice. Resuscitation with fibrinogen but not lactated Ringers largely reduced these changes. Conclusions: Fibrinogen as a resuscitative adjunct in ApoE-/- mice after hemorrhage shock augmented MAP and reduced histopathologic injury and lung permeability, suggesting fibrinogen protects the endothelium by inhibiting MMP-9-mediated syndecan-1 cleavage in obese mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。