Fluorescent Molecular Rotors Quantify an Adjuvant-Induced Softening of Plant Wax

荧光分子转子量化佐剂诱导的植物蜡软化

阅读:1
作者:Petr S Sherin, Markus Rueckel, Marina K Kuimova

Abstract

Epicuticular wax is the outmost layer of plant leaves that protects them from desiccation and penetration of harmful reagents. There is an intense industrial effort in the development of softening agents, adjuvants, that can adjust the permeability of the wax toward pesticides and, thus, play an important role in sustainable agriculture. However, mechanistic understanding of the structure and dynamic properties within the plant wax, particularly upon the application of adjuvants, is currently lacking. In this work, we demonstrate that fluorescence lifetime imaging microscopy (FLIM) combined with molecular rotors, fluorescent probes sensitive to viscosity, can directly probe the microviscosity of amorphous and crystalline phases of model plant wax layers. Moreover, this approach is able to quantify the changes in viscosity in both phases upon the addition of water and adjuvant solutions on top of the wax. We show that water permeation mostly perturbs the crystalline phase of the wax, while our chosen adjuvant, Plurafac LF431, mainly softens the amorphous phase of the wax. Our technique provides a facile and quantitative way to monitor dynamic properties within plant waxes with diffraction-limited resolution and reveals the effect of organic substances on wax structure and rigidity, crucial for designing next-generation agents to improve agricultural efficiency.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。