Elucidation of the mechanism of nuclear localization of Mexican tetra Neu4 via bipartite nuclear localization signal and less conserved regions

通过二分核定位信号和保守性较低的区域阐明墨西哥四肽 Neu4 的核定位机制

阅读:14
作者:Toshiki Hyodo, Akinobu Honda, Satsuki Yamate, Yurina Kubo, Masaharu Komatsu, Kazuhiro Shiozaki

Abstract

Nuclear sialoglycans are minor components in the nucleus, and their biological significance was not well understood. Recently, Nile tilapia Neu4 sialidase (OnNeu4) was identified and reported as the first nuclear sialidase in vertebrates. Although OnNeu4 possesses the nuclear localization signal (NLS) required for nuclear localization, other fish Neu4 sialidases, such as zebrafish and Japanese medaka, also possess NLS, but their subcellular localizations are not nucleus. To understand the nuclear localization mechanism of fish Neu4, we focused on Mexican tetra Neu4 (AmNeu4), which, unlike Neu4 in other fishes, has a bipartite NLS. AmNeu4 exhibited a wide range of optimal pH and substrate specificity, and its gene expression was specifically detected in the liver, spleen, and gut in adult fish. AmNeu4, like OnNeu4, exhibited nuclear localization, which was attenuated by importin inhibitor, and deletion of the bipartite NLS completely reduced the nuclear localization. In addition, the conjugation of the bipartite NLS of AmNeu4 made GFP show nuclear localization. To understand the mechanism of nuclear localization of AmNeu4 and OnNeu4, we compared fish Neu4 amino acid sequences and focused on the less conserved region of Neu4 sialidase (LCR). LCR-deletion mutants of AmNeu4 and OnNeu4 showed significantly reduced the nuclear localization. The LCR region in AmNeu4 and OnNeu4 possessed consecutive Ser/Thr. The Neu4 mutants in which consecutive Ser/Thr in LCR were changed to Ala or deleted significantly suppressed the nuclear localization. These results suggest that the nuclear localization of Neu4 in Nile tilapia and Mexican tetra may be regulated by NLS and LCR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。