Conclusion
This study found new epigenetic mechanisms for keloid formation.
Methods
qPCR was used to detect the mRNA levels and Western blot was used to detect the protein level. DNA Dot blot was used to detect the level of 5hmC. CCK8 was used to examine the cell proliferation rate. EDU/DAPI staining was used to evaluate the living cells' proliferation rate. DNA IP and PCR were used to detect the accumulation of DNA at the target site after 5hmC enrichment.
Results
We found that TET2 was highly expressed in keloid tissue. Interestingly, TET2 expression was increased in fibroblasts that were isolated and cultured in vitro compared to the tissue of origin. Knocking down TET2 expression can effectively decrease the modification level of 5hmC and inhibit the proliferation of fibroblasts. Notably, overexpression of DNMT3A inhibited fibroblast proliferation by decreasing 5hmC. The 5hmC-IP assay showed that TET2 could affect the expression of TGFβ by regulating the 5hmC modification level in the promoter region. And by this way, TET2 regulates the proliferation of fibroblasts.