Mitochondrial Control of Proteasomal Psmb5 Drives the Differentiation of Tissue-Resident Memory T Cells in Patients with Rheumatoid Arthritis

蛋白酶体 Psmb5 的线粒体控制驱动类风湿关节炎患者组织驻留记忆 T 细胞的分化

阅读:8
作者:Tong Wu, Danhua Su, Lei Zhang, Ting Liu, Qianliang Wang, Chenchu Yan, Mengdi Liu, Huiyan Ji, Jiaxin Lei, Ming Zheng, Zhenke Wen

Conclusion

Mitochondrial succinyl-CoA fosters the succinylation of BRD2, resulting in compromised transcription of proteasomal Psmb5 and the differentiation of Trm cells in RA.

Methods

Circulating T cells from patient with RA and healthy individuals were used for Trm cell differentiation. The role of Hobit in Trm differentiation was investigated through targeted silencing experiments. Psmb5 expression regulation was explored by identifying BRD2 as a key transcription factor, with the interaction validated through chromatin immunoprecipitation-quantitative polymerase chain reaction. The impact of BRD2 succinylation on Trm differentiation was examined by manipulating succinyl-CoA levels in T cells. Humanized NSG chimeras representing synovitis provided insights into Trm infiltration in RA synovitis and were used for translational experiments.

Objective

To explore T cell-intrinsic mechanisms underpinning the mal-differentiation of tissue-resident memory T (Trm) cells in patients with rheumatoid arthritis (RA).

Results

In patients with RA, a notable predisposition of CD4+ T cells toward differentiation into Trm cells was observed, demonstrating a positive correlation with the disease activity score 28. Remarkably, Hobit was a pivotal facilitator in the formation of RA CD4+ Trm cells. Mechanistic studies unveiled the dysregulation of proteasomal Psmb5 in T cells of patients with RA as the key factor contributing to elevated Hobit protein levels. The deficiency of proteasomal Psmb5 was intricately linked to BRD2, with succinylation exerting a significant impact on Psmb5 transcription and Trm cell differentiation. This heightened BRD2 succinylation was attributed to elevated levels of mitochondrial succinyl-CoA in RA T cells. Consequently, targeting succinyl-CoA within CD4+ T cells controlled the inflammation of synovial tissues in humanized chimeras.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。