Ruxolitinib-loaded poly-ɛ-caprolactone (PCL) nanoparticles inhibit JAK2/STAT5 signaling in BT474 breast cancer cells by downregulating Bcl-2 and Mcl-1

载有芦可替尼的聚-ε-己内酯 (PCL) 纳米粒子通过下调 Bcl-2 和 Mcl-1 抑制 BT474 乳腺癌细胞中的 JAK2/STAT5 信号传导

阅读:3
作者:Esin Guvenir Celik, Onur Eroglu

Background

JAK/STAT signaling plays an important role in regulating cell proliferation. Reducing proliferation and inducing cell death with gene-specific inhibitors such as ruxolitinib, Receptor tyrosine kinases (RTK) inhibitor targeting JAK1/2, are therapeutic approaches. The use of nanoparticles can reduce the toxicity and side effects of drugs, as they act directly on cancer cells and can selectively increase drug accumulation in tumor cells. Poly-ɛ-caprolactone (PCL) is a polymer that is frequently used in drug development. In this study, Rux-PCL-NPs were synthesized to increase the effectiveness of ruxolitinib. In addition, this study aimed to determine the effect of Rux-PCL-NPs on JAK/STAT signaling and apoptotic cell death.

Conclusions

Our results revealed that Rux-PCL-NPs, which increased the efficacy of ruxolitinib, regulated apoptosis and the JAK2/STAT5 pathway.

Results

Rux-PCL-NPs were synthesized by nanoprecipitation. The Rux-PCL-NPs had a spherical and mean particle size of 219 ± 88.66 nm and a zeta potential of 0.471 ± 0.453 mV. In vitro cytotoxicity and antiproliferative effects were determined by MTT and soft agar colony formation assays, respectively. The effects of ruxolitinib, PCL-NPs, and Rux-PCL-NPs on apoptosis and the JAK/STAT pathway in cells were examined by western blot analysis. PCL-NPs did not have a toxic effect on the cells. The IC50 value of Rux-PCL-NPs was decreased 50-fold compared to that of ruxolitinib. Rux-PCL-NPs promoted cell death by downregulating JAK2 and STAT5, thereby inhibiting the JAK/STAT pathway. Conclusions: Our results revealed that Rux-PCL-NPs, which increased the efficacy of ruxolitinib, regulated apoptosis and the JAK2/STAT5 pathway.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。