Background
Myocardial infarction is a common perioperative complication, and blood flow restoration causes ischemia/reperfusion injury (IRI). Dexmedetomidine (DEX) pretreatment can protect against cardiac IRI, but the mechanism is still insufficiently understood.
Conclusions
DEX pretreatment protects against myocardial IRI, presumably by promoting STAT3 phosphorylation via the α2-adrenoreceptor in vivo and in vitro.
Methods
In vivo, myocardial ischemia/reperfusion (30 minutes/120 minutes) was induced via ligation and then reperfusion of the left anterior descending coronary artery (LAD) in mice. Intravenous infusion of 10 μg/kg DEX was performed 20 minutes before ligation. Moreover, the α2-adrenoreceptor antagonist Yohimbine and STAT3 inhibitor Stattic were applied 30 minutes ahead of DEX infusion. In vitro, hypoxia/reoxygenation (H/R) with DEX pretreatment for 1 hour was performed in isolated neonatal rat cardiomyocytes. In addition, Stattic was applied before DEX pretreatment.
Results
In the mouse cardiac ischemia/reperfusion model, DEX pretreatment lowered the serum creatine kinase-MB isoenzyme (CK-MB) levels (2.47 ± 0.165 vs 1.55 ± 0.183; P < .0001), downregulated the inflammatory response ( P ≤ .0303), decreased 4-hydroxynonenal (4-HNE) production and cell apoptosis ( P = .0074), and promoted the phosphorylation of STAT3 (4.94 ± 0.690 vs 6.68 ± 0.710, P = .0001), which could be blunted by Yohimbine and Stattic. The bioinformatic analysis of differentially expressed mRNAs further confirmed that STAT3 signaling might be involved in the cardioprotection of DEX. Upon H/R treatment in isolated neonatal rat cardiomyocytes, 5 μM DEX pretreatment improved cell viability ( P = .0005), inhibited reactive oxygen species (ROS) production and calcium overload (both P ≤ .0040), decreased cell apoptosis ( P = .0470), and promoted STAT3 phosphorylation at Tyr705 (0.102 ± 0.0224 vs 0.297 ± 0.0937; P < .0001) and Ser727 (0.586 ± 0.177 vs 0.886 ± 0.0546; P = .0157), which could be abolished by Stattic. Conclusions: DEX pretreatment protects against myocardial IRI, presumably by promoting STAT3 phosphorylation via the α2-adrenoreceptor in vivo and in vitro.