The assessment of microbiome changes and fecal volatile organic compounds during experimental necrotizing enterocolitis

实验性坏死性小肠结肠炎期间微生物组变化和粪便挥发性有机化合物的评估

阅读:2
作者:Brian D Hosfield, Natalie A Drucker, Anthony R Pecoraro, William C Shelley, Hongge Li, Nielson T Baxter, Troy B Hawkins, Troy A Markel

Conclusions

Experimental NEC was associated with intestinal dysbiosis. Fecal VOC analysis by the CyranoseⓇ 320 eNose device can discriminate NEC pups from both breastfed and formula-fed controls. Further research is warranted to establish whether fecal VOCs can be used as a biomarker or predictive algorithm to diagnose NEC.

Methods

Experimental NEC was induced in five-day-old mice. Breastfed and formula-fed control groups were also studied. After four days, pups were euthanized and intestines were H&E stained and blindly scored. Stool microbiome analysis was performed via 16S rRNA sequencing. VOC analysis was assessed by the CyranoseⓇ 320 eNose device and p<0.05 was significant.

Results

NEC pups had severe intestinal injury when compared to controls. Microbiome analysis showed that both control groups had significantly higher microbial diversity and relative abundance of Lactobacillus than NEC, and lower relative abundance of Escherichia. Fecal VOC profile for NEC pups was significantly different from controls. Conclusions: Experimental NEC was associated with intestinal dysbiosis. Fecal VOC analysis by the CyranoseⓇ 320 eNose device can discriminate NEC pups from both breastfed and formula-fed controls. Further research is warranted to establish whether fecal VOCs can be used as a biomarker or predictive algorithm to diagnose NEC.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。