Cancer-Associated Endocrine Cells Participate in Pancreatic Carcinogenesis

癌症相关内分泌细胞参与胰腺癌变

阅读:3
作者:Yuan Chen, Xinpeng Yin, Ruiyuan Xu, Rexiati Ruze, Jianlu Song, Chenxue Yin, Chenglin Hu, Chengcheng Wang, Qiang Xu, Yupei Zhao

Aims

The pancreas is composed of endocrine and exocrine parts, and its interlacing structure indicates potential interaction between endocrine and exocrine cells. Although the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has been well characterized, the role of pancreatic endocrine cells during carcinogenesis is relatively understudied.

Background & aims

The pancreas is composed of endocrine and exocrine parts, and its interlacing structure indicates potential interaction between endocrine and exocrine cells. Although the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has been well characterized, the role of pancreatic endocrine cells during carcinogenesis is relatively understudied.

Conclusions

This study systematically maps the alteration of pancreatic endocrine cells in PDAC and elucidates the potential endocrine-exocrine interaction mechanisms during PDAC carcinogenesis. In addition, cancer-associated endocrine cells are defined and characterized, thereby further broadening the composition of PDAC microenvironment.

Methods

The changes of endocrine cells in PDAC by single-cell transcriptome sequencing, spatial transcriptome sequencing, and multiplex immunohistochemistry were depicted. After that, the interaction between pancreatic carcinogenesis and endocrine changes was explored in orthotopic transplantation mice, KrasLSL-G12DPdx1-Cre mice, and KrasLSL-G12Dp53LoxPPdx1-CreER mice. Finally, we proved the mechanism of the interaction between endocrine and exocrine parts of the pancreas through islet isolation, co-culture in vitro and co-injection in vivo.

Results

Pancreatic endocrine cells displayed significantly different transcriptomic characteristics and increased interaction with exocrine part in PDAC. Specifically, among all of the changes, pancreatic polypeptide-positive cells showed a sharp increment accompanied by the progression of the cancer lesion, which might be derived from the transdifferentiation of α and β cells. Interestingly, it was proved that PDAC cells were able to induce the transdifferentiation of pancreatic α cells and β cells into glucagon-pancreatic polypeptide and insulin-pancreatic polypeptide double-positive cells, which further promoted carcinogenesis and development of PDAC in a paracrine-dependent manner and formed a reciprocal interaction. Conclusions: This study systematically maps the alteration of pancreatic endocrine cells in PDAC and elucidates the potential endocrine-exocrine interaction mechanisms during PDAC carcinogenesis. In addition, cancer-associated endocrine cells are defined and characterized, thereby further broadening the composition of PDAC microenvironment.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。