Mechanisms and efficacy of metformin-mediated suppression of established experimental abdominal aortic aneurysms

二甲双胍介导抑制已建立的实验性腹主动脉瘤的机制和疗效

阅读:6
作者:Baohui Xu, Gang Li, Yankui Li, Hongping Deng, Anna Cabot, Jia Guo, Makoto Samura, Xiaoya Zheng, Tiffany Chen, Sihai Zhao, Naoki Fujimura, Ronald L Dalman

Conclusions

Metformin treatment suppresses existing experimental AAA progression in part via AMPK agonist activity, limiting interferon-γ-producing T cell differentiation while enhancing circulating and splenic inflammatory monocyte retention.

Methods

Experimental AAAs were created in male C57BL/6J mice via intra-aortic infusion of porcine pancreatic elastase. Metformin alone (250 mg/kg), or metformin combined with the 5' AMP-activated protein kinase (AMPK) antagonist Compound C (10 mg/kg), were administered to respective mouse cohorts daily beginning 4 days following AAA induction. Further AAA cohorts received either the AMPK agonist AICA riboside (500 mg/kg) as positive, or vehicle (saline) as negative, controls. AAA progression in all groups was assessed via serial in vivo ultrasonography and histopathology at sacrifice. Cytokine-producing T cells and myeloid cellularity were determined by flow cytometric analyses.

Objective

Metformin treatment attenuates experimental abdominal aortic aneurysm (AAA) formation, as well as reduces clinical AAA diameter enlargement in patients with diabetes. The mechanisms of metformin-mediated aneurysm suppression, and its efficacy in suppressing established experimental aneurysms, remain uncertain.

Results

Metformin limited established experimental AAA progression at 3 (-85%) and 10 (-68%) days following treatment initiation compared with saline control. Concurrent Compound C treatment reduced this effect by approximately 50%. In metformin-treated mice, reduced AAA progression was associated with relative elastin preservation, smooth muscle cell preservation, and reduced mural leukocyte infiltration and neoangiogenesis compared with vehicle control group. Metformin also resulted in reduced interferon-γ-, but not interleukin-10 or -17, producing splenic T cells in aneurysmal mice. Additionally, metformin therapy increased circulating and splenic inflammatory monocytes (CD11b+Ly-6Chigh), but not neutrophils (CD11b+Ly-6G+), with no effect on respective bone marrow cell populations. Conclusions: Metformin treatment suppresses existing experimental AAA progression in part via AMPK agonist activity, limiting interferon-γ-producing T cell differentiation while enhancing circulating and splenic inflammatory monocyte retention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。