Mechanisms and efficacy of metformin-mediated suppression of established experimental abdominal aortic aneurysms

二甲双胍介导抑制已建立的实验性腹主动脉瘤的机制和疗效

阅读:2
作者:Baohui Xu, Gang Li, Yankui Li, Hongping Deng, Anna Cabot, Jia Guo, Makoto Samura, Xiaoya Zheng, Tiffany Chen, Sihai Zhao, Naoki Fujimura, Ronald L Dalman

Conclusions

Metformin treatment suppresses existing experimental AAA progression in part via AMPK agonist activity, limiting interferon-γ-producing T cell differentiation while enhancing circulating and splenic inflammatory monocyte retention.

Methods

Experimental AAAs were created in male C57BL/6J mice via intra-aortic infusion of porcine pancreatic elastase. Metformin alone (250 mg/kg), or metformin combined with the 5' AMP-activated protein kinase (AMPK) antagonist Compound C (10 mg/kg), were administered to respective mouse cohorts daily beginning 4 days following AAA induction. Further AAA cohorts received either the AMPK agonist AICA riboside (500 mg/kg) as positive, or vehicle (saline) as negative, controls. AAA progression in all groups was assessed via serial in vivo ultrasonography and histopathology at sacrifice. Cytokine-producing T cells and myeloid cellularity were determined by flow cytometric analyses.

Objective

Metformin treatment attenuates experimental abdominal aortic aneurysm (AAA) formation, as well as reduces clinical AAA diameter enlargement in patients with diabetes. The mechanisms of metformin-mediated aneurysm suppression, and its efficacy in suppressing established experimental aneurysms, remain uncertain.

Results

Metformin limited established experimental AAA progression at 3 (-85%) and 10 (-68%) days following treatment initiation compared with saline control. Concurrent Compound C treatment reduced this effect by approximately 50%. In metformin-treated mice, reduced AAA progression was associated with relative elastin preservation, smooth muscle cell preservation, and reduced mural leukocyte infiltration and neoangiogenesis compared with vehicle control group. Metformin also resulted in reduced interferon-γ-, but not interleukin-10 or -17, producing splenic T cells in aneurysmal mice. Additionally, metformin therapy increased circulating and splenic inflammatory monocytes (CD11b+Ly-6Chigh), but not neutrophils (CD11b+Ly-6G+), with no effect on respective bone marrow cell populations. Conclusions: Metformin treatment suppresses existing experimental AAA progression in part via AMPK agonist activity, limiting interferon-γ-producing T cell differentiation while enhancing circulating and splenic inflammatory monocyte retention.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。