Sleep Fragmentation, Electroencephalographic Slowing, and Circadian Disarray in a Mouse Model for Intensive Care Unit Delirium

重症监护病房谵妄症小鼠模型中的睡眠碎片化、脑电图减慢和昼夜节律紊乱

阅读:2
作者:Elzbieta Dulko, Michal Jedrusiak, Hari P Osuru, Navya Atluri, Meghana Illendula, Eric M Davis, Mark P Beenhakker, Nadia Lunardi

Background

We aimed to further validate our previously published animal model for delirium by testing the hypothesis that in aged mice, Anesthesia, Surgery and simulated ICU conditions (ASI) induce sleep fragmentation, electroencephalographic (EEG) slowing, and circadian disarray consistent with intensive care unit (ICU) patients with delirium.

Conclusions

ASI mice experienced EEG and circadian changes mimicking those of delirious ICU patients. These findings support further exploration of this mouse approach to characterize the neurobiology of delirium.

Methods

A total of 41 mice were used. Mice were implanted with EEG electrodes and randomized to ASI or control groups. ASI mice received laparotomy, anesthesia, and simulated ICU conditions. Controls did not receive ASI. Sleep was recorded at the end of ICU conditions, and hippocampal tissue was collected on EEG recording. Arousals, EEG dynamics, and circadian gene expression were compared with t tests. Two-way repeated measures analysis of variance (RM ANOVA) was used to assess sleep according to light.

Results

ASI mice experienced frequent arousals (36.6 ± 3.2 vs 26.5 ± 3.4; P = .044; 95% confidence interval [CI], 0.29-19.79; difference in mean ± SEM, 10.04 ± 4.62) and EEG slowing (frontal theta ratio, 0.223 ± 0.010 vs 0.272 ± 0.019; P = .026; 95% CI, -0.091 to -0.007; difference in mean ± SEM, -0.05 ± 0.02) relative to controls. In ASI mice with low theta ratio, EEG slowing was associated with a higher percentage of quiet wakefulness (38.2 ± 3.6 vs 13.4 ± 3.8; P = .0002; 95% CI, -35.87 to -13.84; difference in mean ± SEM, -24.86 ± 5.19). ASI mice slept longer during the dark phases of the circadian cycle (nonrapid eye movement [NREM], dark phase 1 [D1]: 138.9 ± 8.1 minutes vs 79.6 ± 9.6 minutes, P = .0003, 95% CI, -95.87 to -22.69, predicted mean difference ± SE: -59.28 ± 13.89; NREM, dark phase 2 (D2): 159.3 ± 7.3 minutes vs 112.6 ± 15.5 minutes, P = .006, 95% CI, -83.25 to -10.07, mean difference ± SE, -46.66 ± 13.89; rapid eye movement (REM), D1: 20.5 ± 2.1 minutes vs 5.8 ± 0.8 minutes, P = .001, 95% CI, -24.60 to -4.71, mean difference ± SE, -14. 65 ± 3.77; REM, D2: 21.0 ± 2.2 minutes vs 10.3 ± 1.4 minutes, P = .029, 95% CI, -20.64 to -0.76, mean difference ± SE, -10.70 ± 3.77). The expression of essential circadian genes was also lower in ASI mice (basic helix-loop-helix ARNT like [BMAL1] : -1.3 fold change; circadian locomotor output cycles protein kaput [CLOCK] : -1.2). Conclusions: ASI mice experienced EEG and circadian changes mimicking those of delirious ICU patients. These findings support further exploration of this mouse approach to characterize the neurobiology of delirium.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。