Anti-leukemic effects of histone deacetylase (HDAC) inhibition in acute lymphoblastic leukemia (ALL) cells: Shedding light on mitigating effects of NF-κB and autophagy on panobinostat cytotoxicity

组蛋白去乙酰化酶 (HDAC) 抑制对急性淋巴细胞白血病 (ALL) 细胞的抗白血病作用:揭示 NF-κB 和自噬对帕比司他细胞毒性的缓解作用

阅读:2
作者:Mahdieh Mehrpouri, Ava Safaroghli-Azar, Atieh Pourbagheri-Sigaroodi, Majid Momeny, Davood Bashash

Abstract

Identification of the roles of epigenetic alterations in cancers has suggested that different molecules involved in this process are potentially therapeutic targets. Given the role of histone deacetylases (HDACs) enzymes in leukemogenesis, we designed a study to investigate the anti-leukemic property of panobinostat, a HDAC inhibitor, in acute lymphoblastic leukemia (ALL) cells. Our results showed that panobinostat decreased cell viability of pre-B ALL-derived cells. The favorable anti-leukemic effects of the inhibitor was further confirmed by cell cycle analysis, where we found that panobinostat prolonged the transition of the cells from G1 phase probably through c-Myc-mediated up-regulation of cyclin-dependent kinase inhibitors. Unlike the apoptotic effect of panobinostat on Nalm-6 cells, the expression of anti-apoptotic nuclear factor-kappa B (NF-κB) target genes remained unchanged. Accordingly, we found that the inhibition of NF-κB pathway using bortezomib boosted the effect of panobinostat, indicating that panobinostat-induced apoptosis could be attenuated through the activation of the NF-κB pathway. The results of the present study reflected another aspect of autophagy in leukemic cells, as we showed that although Nalm-6 cells could exploit autophagy to override the anti-survival effect of HDAC inhibition, the presence of an autophagy inhibitor could alter the compensatory circumstance to induce cell death. Beyond panobinostat cytotoxicity as a single agent, synergistic experiments outlined that pharmaceutical targeting of HDACs could amplify the cytotoxicity of vincristine in ALL cells, delineating that panobinostat, either as a single agent or in a combined modality, possesses novel promising potentials for the treatment of ALL.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。