An approach for elucidating dermal fibroblast dedifferentiation in amphibian limb regeneration

阐明两栖动物肢体再生中真皮成纤维细胞去分化的方法

阅读:2
作者:Akira Satoh, Rena Kashimoto, Ayaka Ohashi, Saya Furukawa, Sakiya Yamamoto, Takeshi Inoue, Toshinori Hayashi, Kiyokazu Agata

Abstract

Urodele amphibians, Pleurodeles waltl and Ambystoma mexicanum, have organ-level regeneration capability, such as limb regeneration. Multipotent cells are induced by an endogenous mechanism in amphibian limb regeneration. It is well known that dermal fibroblasts receive regenerative signals and turn into multipotent cells, called blastema cells. However, the induction mechanism of the blastema cells from matured dermal cells was unknown. We previously found that BMP2, FGF2, and FGF8 (B2FF) could play sufficient roles in blastema induction in urodele amphibians. Here, we show that B2FF treatment can induce dermis-derived cells that can participate in multiple cell lineage in limb regeneration. We first established a newt dermis-derived cell line and confirmed that B2FF treatment on the newt cells provided plasticity in cellular differentiation in limb regeneration. To clarify the factors that can provide the plasticity in differentiation, we performed the interspecies comparative analysis between newt cells and mouse cells and found the Pde4b gene was upregulated by B2FF treatment only in the newt cells. Blocking PDE4B signaling by a chemical PDE4 inhibitor suppressed dermis-to-cartilage transformation and the mosaic knockout animals showed consistent results. Our results are a valuable insight into how dermal fibroblasts acquire multipotency during the early phase of limb regeneration via an endogenous program in amphibian limb regeneration.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。