abLIM1 constructs non-erythroid cortical actin networks to prevent mechanical tension-induced blebbing

abLIM1 构建非红细胞皮质肌动蛋白网络以防止机械张力引起的起泡

阅读:2
作者:Guoqing Li #, Shan Huang #, Sen Yang, Jiabin Wang, Jingli Cao, Daniel M Czajkowsky, Zhifeng Shao, Xueliang Zhu

Abstract

The cell cortex is a layer of cytoskeletal networks underneath the plasma membrane, formed by filamentous actin (F-actin) and cortex proteins including spectrin, adducin, and myosin. It provides cells with proper stiffness, elasticity, and surface tension to allow morphogenesis, division, and migration. Although its architecture and formation have been widely studied in red blood cells, they are poorly understood in non-erythrocytes due to structural complexity and versatile functions. In this study, we identify the actin-binding protein abLIM1 as a novel non-erythroid cell-specific cortex organizer. Endogenous abLIM1 colocalized with cortical βII spectrin but upon overexpression redistributed to thick cortical actin bundles. abLIM1 associated with major cortex proteins such as spectrins and adducin in vivo. Depletion of abLIM1 by RNAi induced prominent blebbing during membrane protrusions of spreading or migrating RPE1 cells and impaired migration efficiency. Reducing cortical tensions by culturing the cells to confluency or inhibiting myosin activity repressed the blebbing phenotype. abLIM1-depleted RPE1 or U2OS cells lacked the dense interwoven cortical actin meshwork observed in control cells but were abundant in long cortical actin bundles along the long axis of the cells. In-vitro assays indicated that abLIM1 was able to crosslink and bundle F-actin to induce dense F-actin network formation. Therefore, abLIM1 governs the formation of dense interconnected cortical actin meshwork in non-erythroid cells to prevent mechanical tension-induced blebbing during cellular activities such as spreading and migration.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。