Dapagliflozin Alleviates Diabetic Kidney Disease via Hypoxia Inducible Factor 1α/Heme Oxygenase 1-Mediated Ferroptosis

达格列净通过缺氧诱导因子 1α/血红素加氧酶 1 介导的铁死亡缓解糖尿病肾病

阅读:25
作者:Yi-Hui Wang, Dong-Yuan Chang, Ming-Hui Zhao, Min Chen

Aims

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) showed excellent renoprotective effects; however, the underlying mechanism remains not fully understood. Previous studies have revealed the importance of ferroptosis, which is closely related to oxidative stress, in the progression of DKD. In the current study, we hypothesized that SGLT2i could relieve ferroptosis and thereby alleviate renal injury in DKD due to their antioxidative stress effects.

Conclusion

This study revealed that SGLT2i played a renoprotective role in DKD, at least in part, through alleviating HIF1α/HO1-mediated ferroptosis. Antioxid. Redox Signal. 40, 492-509.

Results

Typical changes of ferroptosis including massive lipid peroxidation, compromised antioxidant capability, and iron overload were found in db/db mice and high glucose/high fat (HG/HF)-treated HK-2 cells. Furthermore, increased expression of hypoxia inducible factor 1α (HIF1α) and heme oxygenase 1 (HO1) was observed in db/db mice and HG/HF-treated HK-2 cells as well. Dapagliflozin treatment significantly ameliorated the ferroptosis-related changes via attenuating overactivation of the HIF1α/HO1 axis in vivo and in vitro. Besides, downregulation of the HIF1α/HO1 axis alleviated ferroptosis, while overexpression of HIF1α and HO1 aggravated ferroptosis induced by HG/HF in HK-2 cells. Innovation and

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。