Pancreatic INS-1 β-Cell Response to Thapsigargin and Rotenone: A Comparative Proteomics Analysis Uncovers Key Pathways of β-Cell Dysfunction

胰腺 INS-1 β 细胞对毒胡萝卜素和鱼藤酮的反应:比较蛋白质组学分析揭示 β 细胞功能障碍的关键途径

阅读:7
作者:Mehari Muuz Weldemariam, Jongmin Woo, Qibin Zhang

Abstract

Insulin-secreting β-cells in the pancreatic islets are exposed to various endogenous and exogenous stressing conditions, which may lead to β-cell dysfunction or apoptosis and ultimately to diabetes mellitus. However, the detailed molecular mechanisms underlying β-cell's inability to survive under severe stresses remain to be explored. This study used two common chemical stressors, thapsigargin and rotenone, to induce endoplasmic reticulum (ER) and mitochondria stress in a rat insuloma INS-1 832/13 β-cell line, mimicking the conditions experienced by dysfunctional β-cells. Proteomic changes of cells upon treatment with stressors at IC50 were profiled with TMT-based quantitative proteomics and further verified using label-free quantitive proteomics. The differentially expressed proteins under stress conditions were selected for in-depth bioinformatic analysis. Thapsigargin treatment specifically perturbed unfolded protein response (UPR) related pathways; in addition, 58 proteins not previously linked to the UPR related pathways were identified with consistent upregulation under stress induced by thapsigargin. Conversely, rotenone treatment resulted in significant proteome changes in key mitochondria regulatory pathways such as fatty acid β-oxidation, cellular respiration, citric acid cycle, and respiratory electron transport. Our data also demonstrated that both stressors increased reactive oxygen species production and depleted adenosine triphosphate synthesis, resulting in significant dysregulation of oxidative phosphorylation signaling pathways. These novel dysregulated proteins may suggest an alternative mechanism of action in β-cell dysfunction and provide potential targets for probing ER- and mitochondria stress-induced β-cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。