A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells

基于荧光姜黄素的 Zn(II) 复合物可重新激活癌细胞中的突变体 (R175H 和 R273H) p53

阅读:2
作者:Alessia Garufi, Daniela Trisciuoglio, Manuela Porru, Carlo Leonetti, Antonella Stoppacciaro, Valerio D'Orazi, Maria Avantaggiati, Alessandra Crispini, Daniela Pucci, Gabriella D'Orazi

Background

Mutations of the p53 oncosuppressor gene are amongst the most frequent aberration seen in human cancer. Some mutant (mt) p53 proteins are prone to loss of Zn(II) ion that is bound to the wild-type (wt) core, promoting protein aggregation and therefore unfolding. Misfolded p53 protein conformation impairs wtp53-DNA binding and transactivation activities, favouring tumor growth and resistance to antitumor therapies. Screening studies, devoted to identify small molecules that reactivate mtp53, represent therefore an attractive anti-cancer therapeutic strategy. Here we tested a novel fluorescent curcumin-based Zn(II)-complex (Zn-curc) to evaluate its effect on mtp53 reactivation in cancer cells.

Conclusions

Our results demonstrate that Zn-curc complex may reactivate specific mtp53 proteins and that may cross the blood-tumor barrier, becoming a promising compound for the development of drugs to halt tumor growth.

Methods

P53 protein conformation was examined after Zn-curc treatment by immunoprecipitation and immunofluorescence assays, using conformation-specific antibodies. The mtp53 reactivation was evaluated by chromatin-immunoprecipitation (ChIP) and semi-quantitative RT-PCR analyses of wild-type p53 target genes. The intratumoral Zn-curc localization was evaluated by immunofluorescence analysis of glioblastoma tissues of an ortothopic mice model.

Results

The Zn-curc complex induced conformational change in p53-R175H and -R273H mutant proteins, two of the most common p53 mutations. Zn-curc treatment restored wtp53-DNA binding and transactivation functions and induced apoptotic cell death. In vivo studies showed that the Zn-curc complex reached glioblastoma tissues of an ortothopic mice model, highlighting its ability to crossed the blood-tumor barrier. Conclusions: Our results demonstrate that Zn-curc complex may reactivate specific mtp53 proteins and that may cross the blood-tumor barrier, becoming a promising compound for the development of drugs to halt tumor growth.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。