Dibenzodioxin-Based Polymers of Intrinsic Microporosity with Enhanced Transport Properties for Lithium Ions in Aqueous Media

具有内在微孔性的二苯并二恶英基聚合物在水介质中具有增强的锂离子传输性能

阅读:9
作者:Juan Carlos Martínez-López, Marta Santos Rodríguez, Víctor Oliver Cuenca, Giu Silva Testa, Ernst van Eck, Evan Wenbo Zhao, Ángel E Lozano, Cristina Álvarez, Javier Carretero-González

Abstract

Boosting the transport and selectivity properties of membranes based on polymers of intrinsic microporosity (PIMs) toward one specific working analyte of interest is challenging. In this work, a novel family of PIM membranes, prepared by casting and exhibiting optima mechanical properties and high thermal stability, was synthesized from 4,4'-(2,2,2-trifluoro-1-phenylethane-1,1-diyl) bis(benzene-1,2-diol) and two tetrafluoro-nitrile derivatives. Gas permeability measurements evidenced a CO2/CH4 selectivity up to 170% relative to the reference polymer, PIM-1, in agreement with their calculated fractional free volume and the analysis of the textural properties by N2 and CO2 gas adsorption. Besides, the chemical modification by acid hydrolysis of the PIM membranes favored the permeability for lithium ions (LiCl 2M, 6 × 10-9 cm2·s-1) compared to other alkali metal analogs such as sodium (NaCl 2M, 7.38 × 10-10 cm2·s-1) and potassium (KCl 2M, 1.05 × 10-9 cm2·s-1). Moreover, the complete mitigation of the crossover of redox species with higher molecular sizes than the ions from alkali metal salts was confirmed by using in-line benchtop NMR methods. Additionally, the modified PIM membranes were measured in a symmetric electrochemical flow cell using an aqueous electrolyte by combining lithium ferro/ferricyanide redox compounds and lithium chloride. The electrochemical tests showed low polarization, high-rate capability, and capacity retention values of 99% when cycled at 10 mA·cm-2 for over 50 cycles. Based on these results, these polymers could be used as highly selective and conducting membranes in electrodialysis for lithium separation and lithium-based redox flow batteries and as a protective layer in high-energy density lithium metal batteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。