Listeria Phages Induce Cas9 Degradation to Protect Lysogenic Genomes

李斯特菌噬菌体诱导Cas9降解以保护溶原性基因组

阅读:1
作者:Beatriz A Osuna ,Shweta Karambelkar ,Caroline Mahendra ,Kathleen A Christie ,Bianca Garcia ,Alan R Davidson ,Benjamin P Kleinstiver ,Samuel Kilcher ,Joseph Bondy-Denomy

Abstract

Bacterial CRISPR-Cas systems employ RNA-guided nucleases to destroy phage (viral) DNA. Phages, in turn, have evolved diverse "anti-CRISPR" proteins (Acrs) to counteract acquired immunity. In Listeria monocytogenes, prophages encode two to three distinct anti-Cas9 proteins, with acrIIA1 always present. However, the significance of AcrIIA1's pervasiveness and its mechanism are unknown. Here, we report that AcrIIA1 binds with high affinity to Cas9 via the catalytic HNH domain. During lysogeny in Listeria, AcrIIA1 triggers Cas9 degradation. During lytic infection, however, AcrIIA1 fails to block Cas9 due to its multi-step inactivation mechanism. Thus, phages encode an additional Acr that rapidly binds and inactivates Cas9. AcrIIA1 also uniquely inhibits a highly diverged Cas9 found in Listeria (similar to SauCas9) and Type II-C Cas9s, likely due to Cas9 HNH domain conservation. In summary, Listeria phages inactivate Cas9 in lytic growth using variable, narrow-spectrum inhibitors, while the broad-spectrum AcrIIA1 stimulates Cas9 degradation for protection of the lysogenic genome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。