Location of stimuli-responsive peptide sequences within silk-elastinlike protein-based polymers affects nanostructure assembly and drug-polymer interactions

刺激响应肽序列在类丝弹性蛋白聚合物中的位置影响纳米结构组装和药物-聚合物相互作用

阅读:2
作者:Kyle J Isaacson, M Martin Jensen, Douglas B Steinhauff, James E Kirklow, Raziye Mohammadpour, Jason W Grunberger, Joseph Cappello, Hamidreza Ghandehari

Abstract

Silk-elastinlike protein polymers (SELPs) self-assemble into nanostructures when designed with appropriate silk-to-elastin ratios. Here, we investigate the effect of insertion of a matrix metalloproteinase-responsive peptide sequence, GPQGIFGQ, into various locations within the SELP backbone on supramolecular self-assembly. Insertion of the hydrophilic, enzyme-degradable sequence into the elastin repeats allows the formation of dilution-stable nanostructures, while insertion into the hydrophobic silk motifs inhibited self-assembly. The SELP assemblies retained their lower critical solution temperature (LCST) thermal response, allowing up to eightfold volumetric changes due to temperature-induced size change. A model hydrophobic drug was incorporated into SELP nanoassemblies utilising a combination of precipitation, incubation and tangential flow filtration. While the nanoconstructs degraded in response to MMP activity, drug release kinetics was independent of MMP concentration. Drug release modelling suggests that release is driven by rates of water penetration into the SELP nanostructures and drug dissolution. In vitro testing revealed that SELP nanoassemblies reduced the immunotoxic and haemolytic side effects of doxorubicin in human blood while maintaining its cytotoxic activity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。