METTL3 Affects Spinal Cord Neuronal Apoptosis by Regulating Bcl-2 m6A Modifications After Spinal Cord Injury

METTL3 通过调节脊髓损伤后的 Bcl-2 m6A 修饰来影响脊髓神经元凋亡

阅读:2
作者:Shengyu Guo, Taotao Lin, Gang Chen, Zhitao Shangguan, Linquan Zhou, Zhi Chen, Tengbin Shi, Dehui Chen, Zhenyu Wang, Wenge Liu

Conclusion

Inhibition of METTL3 activity or expression can inhibit the apoptosis of spinal cord neurons after SCI through the m6A/Bcl-2 signaling pathway.

Methods

After establishing the oxygen-glucose deprivation (OGD) model of PC12 cells and rat spinal cord hemisection model, we found that the expression of METTL3 and the overall m6A modification level were significantly increased in neurons. The m6A modification was identified on B-cell lymphoma 2 (Bcl-2) messenger RNA (mRNA) by bioinformatics analysis, and m6A-RNA immunoprecipitation and RNA immunoprecipitation. In addition, METTL3 was blocked by the specific inhibitor STM2457 and gene knockdown, and then apoptosis levels were measured.

Objective

Spinal cord injury (SCI) is a severe type of neurological trauma. N6-methyladenosine (m6A) modification is one of the most common internal modifications of RNA. The role of METTL3, the predominant methylation enzyme of m6A modification, in SCI remains unclear. This study aimed to investigate the role of methyltransferase METTL3 in SCI.

Results

In different models, we found that the expression of METTL3 and the overall m6A modification level were significantly increased in neurons. After inducing OGD, inhibition of METTL3 activity or expression increased the mRNA and protein levels of Bcl-2, inhibited neuronal apoptosis, and improved neuronal viability in the spinal cord.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。