3'-Terminal 2'-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2

肺癌 miR-21-5p 的 3'-末端 2'-O-甲基化增强其稳定性和与 Argonaute 2 的结合

阅读:9
作者:Hongwei Liang, Zichen Jiao, Weiwei Rong, Shuang Qu, Zhicong Liao, Xinlei Sun, Yao Wei, Quan Zhao, Jun Wang, Yuan Liu, Xi Chen, Tao Wang, Chen-Yu Zhang, Ke Zen

Abstract

Methylation of miRNAs at the 2'-hydroxyl group on the ribose at 3'-end (2'-O-methylation, 2'Ome) is critical for miRNA function in plants and Drosophila. Whether this methylation phenomenon exists for mammalian miRNA remains unknown. Through LC-MS/MS analysis, we discover that majority of miR-21-5p isolated from human non-small cell lung cancer (NSCLC) tissue possesses 3'-terminal 2'Ome. Predominant 3'-terminal 2'Ome of miR-21-5p in cancer tissue is confirmed by qRT-PCR and northern blot after oxidation/β-elimination procedure. Cancerous and the paired non-cancerous lung tissue miRNAs display different pattern of 3'-terminal 2'Ome. We further identify HENMT1 as the methyltransferase responsible for 3'-terminal 2'Ome of mammalian miRNAs. Compared to non-methylated miR-21-5p, methylated miR-21-5p is more resistant to digestion by 3'→5' exoribonuclease polyribonucleotide nucleotidyltransferase 1 (PNPT1) and has higher affinity to Argonaute-2, which may contribute to its higher stability and stronger inhibition on programmed cell death protein 4 (PDCD4) translation, respectively. Our findings reveal HENMT1-mediated 3'-terminal 2'Ome of mammalian miRNAs and highlight its role in enhancing miRNA's stability and function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。