Moxibustion Ameliorates Ovarian Reserve in Rats by Mediating Nrf2/HO-1/NLRP3 Anti-Inflammatory Pathway

艾灸通过介导 Nrf2/HO-1/NLRP3 抗炎通路改善大鼠卵巢储备

阅读:7
作者:Ge Lu, Qian Wang, Zi-Jing Xie, Shang-Jie Liang, Hong-Xiao Li, Ling Shi, Qian Li, Jie Shen, Jie Cheng, Mei-Hong Shen

Abstract

Diminished ovarian reserve (DOR) is an increasingly emerging reproductive disorder that disturbs reproductive-aged women, which is closely linked with inflammation. In clinic, moxibustion has already been applied for reproductive problems. In the present study, we examined the involvement of inflammation in DOR and investigated the effect of moxibustion for its anti-inflammatory activities. Methods. DOR rat model was established using tripterygium glycosides A tablets (TGs) suspension by intragastric administration and was then treated with either moxibustion or hormone replacement therapy (HRT), respectively. Estrus cycles were observed through vaginal cytology. Ovarian morphological alterations were observed by HE staining. The serum levels of follicle-stimulating hormone (FSH), estradiol (E 2), anti-Müllerian hormone (AMH), tumor necrosis factor alpha (TNF-α), and interleukin-10 (IL-10) were measured through ELISA. The expression levels of Nrf2, HO-1, and NLRP3 were detected using immunohistochemistry. Nrf2, HO-1, and NLRP3 mRNA were examined by RT-PCR. Results. Moxibustion improved estrus cycles, FSH, E 2, and AMH levels relative to DOR rats as well as HRT, while also inhibiting ovarian tissue injury. Anti-inflammatory cytokine IL-10 in peripheral blood was upregulated, and proinflammatory factor TNF-α was decreased after treatment with moxibustion. Moxibustion enhanced the expression of mRNA and protein of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1); in the mean time, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) was suppressed. Conclusions. We demonstrated that moxibustion could ameliorate the ovarian reserve in rats induced by TGs. Overall, the effect of moxibustion was comparable to that of HRT. The underlying mechanism could be attributed to the anti-inflammatory effects of moxibustion, which suppressed NLRP3 activation by upregulating Nrf2/HO-1 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。