Edaravone dexborneol alleviates pericyte-mediated fibrosis depositing extracellular matrix through TGF-β1/IL-11 in cerebral small vessel disease

依达拉奉右冰片通过 TGF-β1/IL-11 减轻脑小血管病中周细胞介导的纤维化沉积细胞外基质

阅读:32
作者:Qingrui Duan #, Zhiyang Liu #, Yuxuan Xing, Haifeng Huang, Lin Zhu, Jiaxuan Liu, Peikun He, Guixian Ma, Yuhu Zhang, Kun Nie, Yuyuan Gao, Lijuan Wang

Background

Chronic cerebral hypoperfusion (CCH) is a critical pathophysiological mechanism underlying cerebral small vessel disease (CSVD). Accumulating evidence have demonstrated that resident pericytes and deposit extracellular matrix (ECM) and play a key role in mediating fibrosis in hypoxic changes. Edaravone dexborneol (EDB) is known to target multiple pathways involved in fibrosis.

Conclusions

Our findings reveal the role of pericyte-mediated fibrosis in depositing ECM in the pathogenesis of CSVD. EDB could improve symptoms and the underlying pathogenesis of CCH mice and decrease the expression of the fibrous profiles of pericytes and ECM proteins, which may be regulated by TGF-β1/ IL-11. EDB treatment, targeting pericytes fibrosis, may be a novel therapeutic strategy for CSVD.

Methods

We constructed the CCH mouse models that were subjected to either PBS or EDB at different concentrations. Measures of cognitive function, neuronal damage, white matter lesion (WML), the fibrous profiles of pericytes and ECM protein were investigated to assess the effect of EDB. RNA sequencing of OGD in pericytes was performed to identify a key signaling pathway.

Results

We observed that both medium and high concentrations of EDB could ameliorate CCH-induced cognitive impairment and emotional disorders. Neuronal damage in cortical layer and hippocampus and WML in corpus callosum were improved by EDB, which was consistent with the tends of fibrous pericytes and ECM proteins in these regions. RNA sequencing suggested that TGF-β1/IL-11 plays an important role in mechanism of pericytes fibrosis. Subsequently, the results of sequencing were confirmed in both cellular and mouse model. Conclusions: Our findings reveal the role of pericyte-mediated fibrosis in depositing ECM in the pathogenesis of CSVD. EDB could improve symptoms and the underlying pathogenesis of CCH mice and decrease the expression of the fibrous profiles of pericytes and ECM proteins, which may be regulated by TGF-β1/ IL-11. EDB treatment, targeting pericytes fibrosis, may be a novel therapeutic strategy for CSVD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。