Machine learning-optimized targeted detection of alternative splicing

机器学习优化的选择性剪接靶向检测

阅读:1
作者:Kevin Yang ,Nathaniel Islas ,San Jewell ,Di Wu ,Anupama Jha ,Caleb M Radens ,Jeffrey A Pleiss ,Kristen W Lynch ,Yoseph Barash ,Peter S Choi

Abstract

RNA sequencing (RNA-seq) is widely adopted for transcriptome analysis but has inherent biases that hinder the comprehensive detection and quantification of alternative splicing. To address this, we present an efficient targeted RNA-seq method that greatly enriches for splicing-informative junction-spanning reads. Local splicing variation sequencing (LSV-seq) utilizes multiplexed reverse transcription from highly scalable pools of primers anchored near splicing events of interest. Primers are designed using Optimal Prime, a novel machine learning algorithm trained on the performance of thousands of primer sequences. In experimental benchmarks, LSV-seq achieves high on-target capture rates and concordance with RNA-seq, while requiring significantly lower sequencing depth. Leveraging deep learning splicing code predictions, we used LSV-seq to target events with low coverage in GTEx RNA-seq data and newly discover hundreds of tissue-specific splicing events. Our results demonstrate the ability of LSV-seq to quantify splicing of events of interest at high-throughput and with exceptional sensitivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。