Impaired autophagic flux in the human brain after traumatic brain injury

创伤性脑损伤后人脑自噬通量受损

阅读:2
作者:Jiadong Lang, Boyu Sun, Shiyao Feng, Guozhu Sun

Abstract

Emerging evidence indicates that dysfunctional autophagic flux significantly contributes to the pathology of experimental traumatic brain injury (TBI). The current study aims to clarify its role post-TBI using brain tissues from TBI patients. Histological examinations, including hematoxylin and eosin, Nissl staining, and brain water content analysis, were employed to monitor brain damage progression. Electron microscopy was used to visualize autophagic vesicles. Western blotting and immunohistochemistry were performed to analyze the levels of important autophagic flux-related proteins such as Beclin1, autophagy-related protein 5, lipidated microtubule-associated protein light-chain 3 (LC3-II), autophagic substrate sequestosome 1 (SQSTM1/p62), and cathepsin D (CTSD), a lysosomal enzyme. Immunofluorescence assays evaluated LC3 colocalization with NeuN, P62, or CTSD, and correlation analysis linked autophagy-related protein levels with brain water content and Nissl bodies. Early-stage TBI results showed increased autophagic vesicles and LC3-positive neurons, suggesting autophagosome accumulation due to enhanced initiation and reduced clearance. As TBI progressed, LC3-II and P62 levels increased, while CTSD levels decreased. This indicates autophagosome overload from impaired degradation rather than increased initiation. The study reveals a potential association between worsening brain damage and impaired autophagic flux post-TBI, positioning improved autophagic flux as a viable therapeutic target for TBI.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。