Mechanism of action of the viral chemokine-binding protein E163 from ectromelia virus

病毒趋化因子结合蛋白 E163 的作用机制

阅读:10
作者:Haleh Heidarieh, Antonio Alcamí

Abstract

Chemokines interact with glycosaminoglycans (GAGs) at the cellular surface and to specific cell-surface receptors to activate signaling pathways. The GAG interaction allows the formation of a chemotactic gradient of chemokine required for cell haptotaxis and chemokine oligomerization. Poxviruses encode secreted chemokine-binding proteins with no sequence similarity to their cellular counterparts to modulate the host immune system. The E163 protein from ectromelia virus, the causative agent of mousepox, binds chemokines through their GAG-binding domain. In addition, E163 interacts with GAGs to be anchored at the cell surface, but its ability to interfere with chemokine-GAG interactions has not been demonstrated. We report the identification of the GAG-binding regions in E163 and the generation of mutant forms deficient of GAG binding. Chemokine binding assays show that some of the E163 GAG-binding sites are also involved in the interaction with chemokines. By using recombinant GAG-binding mutant forms we demonstrate that E163 prevents the interaction of chemokines with cell-surface GAGs, providing mechanisms for the immunomodulatory activity of the viral chemokine-binding protein E163.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。